Topological properties of Hilbert schemes of almost-complex four-manifolds II - Archive ouverte HAL
Journal Articles Geometry and Topology Year : 2011

Topological properties of Hilbert schemes of almost-complex four-manifolds II

Abstract

In this article, we study the rational cohomology rings of Voisin's punctual Hilbert schemes $X^{[n]}$ associated to a symplectic compact fourfold $X$. We prove that these rings can be universally constructed from $H^*(X,\mathbb{Q})$ and $c_1(X)$, and that Ruan's crepant resolution conjecture holds if $c_1(X)$ is a torsion class. Next, we prove that for any almost-complex compact fourfold $X$, the complex cobordism class of $X^{[n]}$ depends only on the cobordism class of $X$.
Fichier principal
Vignette du fichier
Hilbert II.pdf (721.67 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01301345 , version 1 (18-11-2019)

Identifiers

Cite

Julien Grivaux. Topological properties of Hilbert schemes of almost-complex four-manifolds II. Geometry and Topology, 2011, 15 (1), pp.261-330. ⟨10.2140/gt.2011.15.261⟩. ⟨hal-01301345⟩
81 View
39 Download

Altmetric

Share

More