Topological properties of Hilbert schemes of almost-complex four-manifolds II
Résumé
In this article, we study the rational cohomology rings of Voisin's punctual Hilbert schemes $X^{[n]}$ associated to a symplectic compact fourfold $X$. We prove that these rings can be universally constructed from $H^*(X,\mathbb{Q})$ and $c_1(X)$, and that Ruan's crepant resolution conjecture holds if $c_1(X)$ is a torsion class. Next, we prove that for any almost-complex compact fourfold $X$, the complex cobordism class of $X^{[n]}$ depends only on the cobordism class of $X$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...