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Topological properties of Hilbert schemes of almost-complex
four-manifolds (II)

JULIEN GRIVAUX

In this article, we study the rational cohomology rings of Voisin’s Hilbert schemes
X[n] associated with a symplectic compact four-manifold X . We prove that these
rings can be universally constructed from H ∗(X,Q) and c1(X), and that Ruan’s
crepant resolution conjecture holds if c1(X) is a torsion class. Next, we prove that
for any almost-complex compact four-manifold X , the complex cobordism class of
X[n] depends only on the complex cobordism class of X .

32Q60; 14C05,14J35

1 Introduction

The Hilbert schemes of points X[n] of a smooth projective complex surface X are
moduli spaces for finite subschemes of length n on X . By a result of Fogarty [17], the
varieties X[n] are smooth crepant resolutions of the n–fold symmetric powers X(n) of
X , so that they present a strong geometric interest. Hilbert schemes of points have been
intensively studied in the past twenty years, and this has led to important developments
in algebraic and differential geometry as well as in theoretical physics (see [25], [20]
for an overview).

Among these various studies, we will recall here what concerns the cohomology rings
H ∗
(
X[n],Q

)
of Hilbert schemes.

The first step towards the understanding of the vector spaces H ∗
(
X[n],Q

)
was achieved

by Göttsche [18] with the computation of the generating series for the Betti numbers
bi(X

[n]) in terms of the Betti numbers of the surface X . Then Wafa and Witten pointed out
that the infinite-dimensional vector space H = ⊕ n≥0 H ∗

(
X[n],Q

)
was (by Göttsche’s

formula) an abstract highest-weight representation of the Heisenberg super-algebra
modeled on H ∗

(
X,Q

)
. Such a construction was geometrically realized independently

by Nakajima [35] and by Grojnowski [24], using correspondences given by incidence
varieties. The additive structure of the cohomology rings of Hilbert schemes of points
was thus given a precise geometric description.

http://www.ams.org/mathscinet/search/mscdoc.html?code=32Q60,(14C05,14J35)
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Then Lehn [26] obtained a decisive result in the study of the multiplicative structure.
He computed explicitly, when E is an algebraic vector bundle on X and the E [n]

are the associated tautological bundles on the X[n] , the cup product by ch(E [n]) on
H ∗
(
X[n],Q

)
, and described in this way the subring of H generated by the Chern classes

of all the tautological bundles. This study was completed by Li, Qin and Wang [30], who
constructed virtual tautological Chern characters G(α, n) attached to each cohomology
class α on X , and computed the cup product by each G(α, n) on H. The classes
G(α, n) extend the Chern characters of the tautological bundles in the following way: if
α is the Chern character of an algebraic vector bundle E , then G(α, n) is the Chern
character of E [n] . Besides, it is shown in [30] that the components of

(
Gi(α, n)

)
0≤i<n

of the classes G(α, n) generate the ring H ∗
(
X[n],Q

)
when α runs through a basis of

H ∗
(
X,Q

)
. Using these generators, the authors obtained in [31] a universal description

of H ∗
(
X[n],Q

)
from the ring H ∗

(
X,Q

)
and the first Chern class of X in H2(X,Q).

This study led to interesting consequences in the particular case where X is a K3–
surface. Indeed, at the same time, Chen and Ruan [10] developed the theory of orbifold
cohomology and at the existence of strong relations between the orbifold cohomology
ring of an orbifold and the cohomology ring of a crepant resolution: this is known as
the cohomological crepant resolution conjecture (see [39]). If X is a K3–surface, the
Hilbert schemes X[n] are hyperkähler by a result of Beauville [5] and in this case the
cohomological crepant resolution conjecture predicts that for every positive integer n,
the ring H ∗

(
X[n],C

)
and the orbifold cohomology ring H ∗orb

(
X(n),C

)
of the n–fold

symmetric product of X are isomorphic [1, Conj. 4.24]. The above recalled description
of the cohomology ring of Hilbert schemes made it possible to prove this prediction
(see [28]) by putting together results of Lehn–Sorger [28] for the Hilbert schemes part
with the computations performed independently by Fantechi–Göttsche [16] and Uribe
[43] for the orbifold part.

If we leave the algebraic setting and consider abstract compact complex surfaces instead
of projective ones, Hilbert schemes of points still exist (they are usually called Douady
schemes). If X is a compact Kähler surface, it can be deformed to a projective surface, so
that the general description given for the cohomology rings of X[n] when X is projective
remains valid. In the general case of possibly non-Kähler compact complex surfaces,
Göttsche’s formula has been proved by De Cataldo–Migliorini [8], but the study of the
multiplicative structure cannot be performed as in the projective case. Indeed, Lehn
[26] uses in an essential way the fact that the cohomological cycle classes of smooth
algebraic curves on a smooth projective surface X span H1, 1(X). This property fails for
abstract complex compact surfaces.

In a still more general context, Voisin defined in [44] Hilbert schemes X[n] associated
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with any almost-complex four-manifold (X, J): for every positive integer n, X[n] is a
stably almost-complex differentiable manifold of real dimension 4n. These almost-
complex Hilbert schemes are symplectic if X is symplectic (see [45]), and are still
crepant resolutions of the n–fold symmetric products of X . This construction sheds
a new light on the results we have mentioned about the cohomology rings of Hilbert
schemes: indeed, Voisin’s results imply that, for any projective surface X and any
positive integer n, the underlying differentiable manifold of X[n] depends only on the
underlying differentiable manifold of X and on the deformation class of the complex
structure of X in the space of almost-complex structures. This explains why the ring
H ∗
(
X,Q

)
depends only on almost-complex invariants of X . On the other hand, it

is worth noticing that orbifold cohomology is naturally defined for almost-complex
orbifolds, which includes n–fold symmetric products of any almost-complex manifold.

Our paper is the second part of a program, the aim of which is the study of Voisin’s almost-
complex Hilbert schemes. The first part [23] has been devoted to the additive structure
of their cohomology rings: Göttsche’s formula has been proved and Nakajima operators
have been constructed. The first main concern here is the study of the ring structure of
the almost-complex Hilbert schemes. We prove the analog of Li–Qin–Wang’s result
quoted above under a symplectic hypothesis:

Theorem 1.1 If (X, J) is a symplectic four-manifold, the rings H ∗
(
X[n],Q

)
can be

constructed by universal formulae from the ring H ∗
(
X,Q

)
and the first Chern class of

X in H2(X,Q).

This theorem is proved in § 5.3. Let us have a glimpse at the strategy of the proof.
The techniques developed in [23] allow us to adapt in the almost-complex case the
quasi-totality of the proof of Lehn’s main formula [26, Th 3.10], except for the very
argument which has already been pointed out for non algebraic complex surfaces: if
(X, J) is an almost-complex compact four-manifold, the homology classes of smooth
J–holomorphic curves in X do not span H2(X,Q) in general. To overcome this
difficulty, we use the symplectic assumption: if X is symplectic and if J is an adapted
almost-complex structure, Donaldson’s theorem on symplectic divisors [12] makes it
possible to span H2(X,Q) by pseudo-holomorphic curves for small perturbations of the
almost-complex structure J .

The second important problem in the proof of Theorem 1.1, which occurs only if the
first Betti number of X is nonzero, is to construct virtual tautological characters for
almost-complex Hilbert schemes. Indeed, in the classical situation, if X is a projective
surface, and if Yn is the incidence locus in X[n] × X , the virtual tautological Chern
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character G(α, n) is equal to pr1∗
[
ch(OYn

) . pr ∗2 (α . td(X))
]
. The problem in the almost-

complex setting lies in the term ch(OYn
). Unlike in the case of vector bundles, there is

no tractable analog of coherent analytic sheaves on almost-complex Hilbert schemes:
the differentiable structure of X[n] is pretty hard to deal with; the topological structure
of X[n] (as a C 0 –manifold) would do better, but sheaves of continuous functions are
generally ill-behaved. To explain the means used to cope with this problem, we have to
recall the basics of the construction of X[n] when X is an almost-complex four-manifold:
it relies on the choice of a relative integrable complex structure J rel

n , which is essentially
a smooth family J rel

n, x of integrable complex structures parameterized by X(n) such that
for each x in X(n) , J rel

n, x is an integrable complex structure in a neighbourhood Wx of the
points of x . If W[n]

rel is the disjoint union of the Hilbert–Douady schemes W [n]
x , where

each Wx is endowed with the integrable structure J rel
n, x , then X[n] is a subset of W[n]

rel .
Our main idea is to replace X[n] by W [n]

rel , the latter having a much better structure: it

is a differentiable orbifold fibred in smooth analytic sets over X(n) . We develop in a
systematic way a theory for these spaces, which we call relative analytic spaces, and for
a particular class of sheaves on them, the relatively coherent sheaves. These sheaves are
locally an extension of classical coherent analytical sheaves by C∞ parameters. If T is
a differentiable orbifold chosen as parameter space and if F is a coherent analytic sheaf
on an analytic set Z , then it is possible to define a sheaf C∞(T,F) of smooth sections
of F with parameters in T as follows: if F is the sheaf OZ , then C∞(T,OZ) is the
subsheaf of C∞Z×T consisting of smooth functions holomorphic in the first variables,
and for an arbitrary F , the sheaf C∞(T,F) is equal to F ⊗OZ

C∞(T,OZ). Besides,
this construction can be sheafified in the space of parameters: if V is a differentiable
orbifold, there exists a sheaf F̃ on Z × V such that for all open subsets U and T of
Z and V respectively, Γ(U × T, F̃) is equal to Γ(U, C∞(T,F)). In our construction,
Z×V is a local model for a relative analytic space and F̃ is a local model for a relatively
coherent sheaf on Z × V . A relative analytic space is obtained by gluing together a
family of such local models and so is a relatively coherent sheaf.

The formalism of relative analytic spaces and relatively coherent sheaves allows us to
use tools of algebraic and analytic geometry in the almost-complex setting. It does not
only solve our present problem, but will be essential in the last section of the paper
(§ 6). We give an independent exposition of this formalism, as it may be useful in other
situations.

As soon as Lehn’s formula is obtained and virtual Chern characters are constructed,
Theorem 1.1 follows from formal combinatorial arguments. We also prove (in § 5.3)
that Ruan’s cohomological crepant resolution conjecture is valid for Hilbert schemes of
symplectic compact four-manifolds with torsion first Chern class:
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Theorem 1.2 Let (X, ω) be a symplectic compact four-manifold with vanishing first
Chern class in H2(X,Q). Then, for every positive integer n, the rings H∗

(
X[n],C

)
and

H ∗orb

(
X(n),C

)
are isomorphic.

Our second object in this paper is the description of the complex cobordism classes of
almost-complex Hilbert schemes. We obtain:

Theorem 1.3 Let (X, J) be an almost-complex compact four-manifold. For any positive
integer n, the complex cobordism class of X[n] given by its stable almost-complex
structure depends only on the complex cobordism class of X .

This theorem is proved in § 6. Our interest in this problem goes back to Voisin’s
original motivation for constructing Hilbert schemes in the almost-complex setting: it
is the computation of the cobordism classes of Hilbert schemes of points for projective
surfaces, achieved by Ellingsrud–Göttsche–Lehn in [15]. The authors proved that
these classes can be universally computed from the cobordism classes of the surface
X itself. Their result shows that Hilbert schemes of points for projective surfaces
can be interpreted as modifications at the level of complex cobordism. Voisin’s idea
was that this modification of the complex cobordism could be lifted at the level of
almost-complex manifolds. Although she actually constructed Hilbert schemes for
almost-complex four-manifolds, it is not at all clear that they actually lift the classical
Hilbert schemes at the cobordism level. Our theorem means that it is indeed the case.
The proof relies heavily on the use of relatively coherent sheaves to adapt the argument
of [15] in the almost-complex setting.

Let us now describe the organization of the paper.

Two distinct aims are pursued in § 2. The first one is to define relative analytic spaces,
which occur in particular in Voisin’s construction of almost-complex Hilbert schemes.
The second one is to recall this construction as well as related results. This section,
which is mainly expository, will be used throughout the paper. In § 2.1, we recall
classical results about Hilbert schemes of points. In § 2.2, we introduce relative and
differentiable analytic spaces. This section consists mostly of definitions. The link
between relative analytic spaces and relative integrable structures originally used in
[44] is given by Proposition 2.12. We also state a general existence result for relative
integrable structures (Proposition 2.13), which is proved in § 7. In § 2.3, we recall the
construction of almost-complex Hilbert schemes only as topological spaces. For the
construction of their differentiable structures, we refer the reader to [45, § 2] for an
outline and to [44, § 3] for a detailed exposition. Then we state the main results of
[44], [45] and [23] about almost-complex and symplectic Hilbert schemes. In § 2.4, we
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recall briefly the construction of incidence varieties carried out in [23, § 4], mainly to
fix the notations. The compatibility conditions (A) and (B) introduced on page 18 will
appear several times in § 3.5, § 5.2 and § 6.

In § 3, we present the general theory of relatively coherent sheaves on the relative
analytic spaces introduced in § 2.2. This formalism is rather heavy and will be used
in § 5.2 to construct virtual tautological Chern characters and in § 6 to compute the
complex cobordism class of almost-complex Hilbert schemes. The reader interested
only in the description of the cohomology ring of X[n] when X is an almost-complex
compact four-manifold with vanishing first Betti number may skip this section except
for Definition 3.1, and go directly to § 4. In § 3.1, we define relatively coherent
sheaves as well as related operations: pullback, internal Hom, tensor product and the
corresponding derived operations. In § 3.2, we define relative analytic subspaces and
prove in Proposition 3.11 that their structure sheaves are relatively coherent. The proof
relies on deep properties concerning ideals of differentiable functions. We also prove
in Proposition 3.13 that relatively coherent sheaves are stable under push-forward by
finite maps. The aim of § 3.3 is to generalize the formalism of analytic K–theory of [6]
for relative analytic spaces. Suitable morphisms are introduced in Definition 3.14, so
that the relatively coherent sheaves on a relative analytic space X becomes an abelian
category. The associated Grothendieck group is by definition the relative analytic
K–theory of X. Then the operations defined in § 3.2 and § 3.3 induce operations in
relative K–theory. Various formulae relating these operations are grouped in Proposition
3.16; they will be frequently used in § 3.5, § 5.2 and § 6. The aim of § 3.4 is to construct
a map from relative analytic K–theory to topological K–theory with complex coefficients.
In the case of usual analytic K–theory, such a map can be obtained via global real
analytic locally free resolutions of coherent analytic sheaves (see [2, Prop. 2.6]). It is
also possible to use differentiable resolutions instead of real analytic ones, as explained
in [3, § 6]; this is the method we adopt in the case of relatively coherent sheaves. The
important point is that, although differentiable coherent sheaves as introduced by Atiyah
and Hirzebruch in [3, Def. 6.1] are defined by a global condition, it turns out that they
can be characterized by a local condition: it is the object of Proposition 3.17. This
allows us to prove that any relatively coherent sheaf F on a relative analytic space X

admits a finite locally free resolution over C∞X in a neighbourhood of every compact
subset of X (Proposition 3.19), and then to associate with F a well defined element in
topological K–theory, called the topological class of F . Next, we prove two important
results about this class, namely the functoriality by pullback (Proposition 3.20) and the
homotopy invariance (Proposition 3.21). In § 3.5 we apply the formalism of § 3.1–3.4
and associate with any almost-complex compact four-manifold X various incidence
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sheaves on relative analytic spaces built from X via suitable relative integrable complex
structures. This defines the geometric setting which will be used independently in § 5.2
and § 6. The last result of the section (Proposition 3.27), which is the analog of [15,
Lemma 1.1] in a relative setting, will be used only in the proof of Proposition 6.8.

The object of § 4 is to carry out for symplectic four-manifolds Lehn’s computation
of the boundary operator [26, Th. 3.10]. In § 4.1 we adapt the first part of Lehn’s
argument to the almost-complex case as we did for the Nakajima relations in [23]. This
yields half of Lehn’s formula (Theorem 4.2). In § 4.2, we use Donaldson’s theorem
on symplectic divisors [12] to establish a general result (Proposition 4.6) concerning
pseudo-holomorphic curves on symplectic four-manifolds. This result allows us to
obtain in § 4.3 the other half of Lehn’s formula when X is symplectic: this is the object
of Theorem 4.7.

In § 5, we deal with the cohomology rings of Hilbert schemes of points for symplectic
compact four-manifolds. In § 5.1, we prove an induction relation for the Chern charac-
ters of the tautological vector bundles constructed in [23] (Lemma 5.1). In § 5.2, we
construct virtual Chern characters satisfying the same induction relation (Proposition
5.2). As we already mentioned, we use the machinery of relatively coherent sheaves,
and especially § 3.5. Note that § 5.2 can be skipped if the first Betti number of X
vanishes. In § 5.3, we state and prove our main results about the cohomology rings of
symplectic Hilbert schemes which are Theorems 5.6, 5.7 and 5.9.

Finally, § 6 is entirely devoted to the computation of the cobordism class of Hilbert
schemes of an almost-complex compact four-manifold (Theorem 6.1). We combine
the strategy of [15, § 1-3] with the use of the relative incidence sheaves of § 3.5. In
§ 6.1, § 6.2 and § 6.3 respectively, we extend to the relative setting the results of [15,
Prop. 2.2, Prop. 2.3 and Prop. 3.1]. This is the object of Propositions 6.4, 6.5 and 6.8.

Acknowledgement. I wish to thank my advisor Claire Voisin, whose work on almost-
complex Hilbert schemes is at the origin of this article. Her deep knowledge of the
subject and her frequent and judicious advice have been most valuable to me. I also
wish to thank her for her kindness and her patience. Finally, I thank the referee for
his/her useful comments.
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2 Almost-complex Hilbert schemes and relative analytic
spaces

2.1 Hilbert schemes, incidence varieties and tautological bundles

Let X be a smooth complex manifold, OX be its sheaf of holomorphic functions and n
be a positive integer.

Definition 2.1 The Hilbert–Douady scheme X[n] of n–points in X is the set of zero-
dimensional subschemes of length n in X , ie the set of ideal sheaves J of OX such
that

∑
p∈X dimCOp/Jp is equal to n.

Let Sn be the symmetric group on n symbols and let X(n) := Xn/Sn denote the n–fold
symmetric product of X .

Definition 2.2 The Hilbert–Chow morphism Γ : X[n] // X(n) is defined by the
formula Γ(ξ)=

∑
p∈X lp(ξ) p, where lp(ξ) is the length of ξ at p.

Some basic properties of Hilbert schemes of points are:

– X[n] is a complex analytic space and Γ is a bimeromorphic map.
– If X is compact, so is X[n] .
– The fibers of Γ are projective, and irreducible if dim X = 2 [7].
– If X is a complex curve, then Γ is an isomorphism and X[n] is smooth.
– If X is a complex surface, then X[n] is smooth of dimension 2n and is irreducible if X
is connected [17].

For a thorough study of Hilbert schemes of points, we refer the reader to [19] and [35].

In this section, we only consider the case dim X = 2. The Hilbert schemes corresponding
to different values of n are related through the incidence varieties:

Definition 2.3 For all positive integers m and n such that m > n, the incidence variety
X[m, n] is the set of couples (ξ, ξ′) in X[n] × X[m] such that ξ is a subscheme of ξ′ .

The incidence varieties X[m, n] are analytic subvarieties of X[n] × X[m] . The case
m = n + 1 appears as particularly interesting in the theory:

– X[n+1, n] is smooth and irreducible [9], [42], [Ellingsrud (unpublished)].
– If Yn is the incidence locus, defined as

(2–1) Yn = {(ξ, x) in X[n] × X such that x ∈ supp(ξ)},
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then X[n+1, n] ' P(Jn) [11, Prop. 3.3]. As a consequence, X[n+1, n] is isomorphic to
the schematic blowup of Yn in X[n] × X . The exceptional divisor associated with this
blowup is

(2–2) D = {(ξ, ξ′) in X[n+1, n] such that supp(ξ) = supp(ξ′)}·

These properties show that the incidence variety X[n+1, n] is closely related to the
incidence locus Yn . The latter satisfies the following properties:

– The morphism pr1 |Yn
: Yn

// X[n] is flat and finite.

– The ideal sheaf JYn
admits a global locally free resolution of length 2 on X[n] × X

[11, Lemma 3.2].
– If φ : X[n+1, n] // X[n] and ψ : X[n+1, n] // X[n+1] are the natural morphisms
induced by the projections, if ρ : X[n+1, n] // X is the residual map defined by
the formula ρ(ξ, ξ′) = supp

(
ξ/ξ′

)
, if j = (id, ρ) : X[n+1, n] // X[n+1, n] × X and if

L = OX[n+1, n](−D), then there exists a natural exact sequence on X[n+1, n]×X [15, § 1]

(2–3) 0 // j∗L // ψ ∗XOYn+1
// φ ∗XOYn

// 0.

The variety X[n+1, n] can be constructed explicitly via a global locally free resolution

0 // A // B // JYn
// 0

of JYn
: if P(B) is the projective bundle of B (using Grothendieck’s convention for

projective bundles), if π : P(B) // X[n] × X is the associated projection and if s is
the section of π ∗A ∗(1) given by the morphism π ∗A // π ∗B // OB(1), then s is
transverse to the zero section and its vanishing locus is isomorphic to X[n+1, n] .

We end this section with tautological bundles. Let pr1 and pr2 be the projections from
X[n] × X on the first and second factors.

Definition 2.4 Let E be a holomorphic vector bundle on X and n be a positive integer.
The tautological vector bundle E [n] is a holomorphic vector bundle on X[n] defined by
the formula E [n] = pr1∗

(
OYn

. pr ∗2 E
)

.

If E is a holomorphic vector bundle on X and n is a positive integer, the tautological
vector bundles E [n] and E [n+1] are related through an exact sequence on X[n+1, n] (see
[26, p. 193]):

(2–4) 0 // ρ ∗E ⊗ L // ψ ∗E [n+1] // φ ∗E [n] // 0.
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2.2 Relative spaces and relative integrable complex structures

The geometric structure underlying the construction of the almost-complex Hilbert
scheme of [44] is that of relative integrable structure, or in an almost equivalent way that
of relative analytic space. In this article, this point of view is systematically expanded
in order to study coherent sheaves in relative analytic spaces, which is done in § 3.

Throughout this section, B and B′ denote compact differentiable effective orbifolds
(see [40], [1, § 1.1]). Recall that a map f : B // B′ is smooth if for any b in B there
exist two orbifold charts (Vb , Gb , Ub ) and (Vf (b) , Gf (b) , Uf (b) ) near b and f (b), a
group morphism λ : Gb

// Gf (b) and a smooth λ–equivariant map from Vb to Vf (b)
inducing f on Ub .

Definition 2.5 Let X be a separated topological space and π : X // B be a continu-
ous surjective map.

(i) A relative chart (resp. relative holomorphic chart) on X is given by a homeo-
morphism φ : U ∼ //Y × V such that π|U = pr2 ◦φ, where U is an open subset
of X, V is an open subset of B and Y is a differentiable manifold (resp. Y is a
smooth analytic space).

(ii) Let φ : U ∼ //Y × V and ψ : U′ ∼ //Y ′ × V ′ be two relative charts (resp. relative
holomorphic charts) and let (y, v) � // (γ(y, v), v) be the associated transition
function ψ ◦ φ−1 : φ(U ∩ U′) // ψ(U ∩ U′). The charts φ and ψ are compat-
ible if γ is smooth (resp. γ is smooth and for all v in pr2(φ(U ∩U′)) the function
y � // γ(y, v) is holomorphic).

(iii) A relative atlas (resp. relative holomorphic atlas) on X is a collection of
compatible relative charts (resp. relative holomorphic charts) on X whose
domains cover X.

(iv) A relative atlas (resp. relative holomorphic atlas) A on X is maximal if every
relative chart (resp. relative holomorphic chart) on X compatible with all the
charts of A belongs to A.

(v) If A is a relative atlas (resp. relative holomorphic atlas) on X, the saturated atlas
of A is the smallest maximal atlas containing A.

To be able to define and study relatively coherent sheaves in § 3, we introduce the notion
of complete relative holomorphic atlas (cf. Remark 3.3 (iii)).

Definition 2.6 Let X be a separated topological space and let π : X // B be a
continuous surjective map.
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(i) If φ : U ∼ //Y × V is a relative holomorphic chart, if Y ′ (resp. V ′ ) is an open

subset of Y (resp. V ) and if U′ = φ−1(Y ′ × V ′), then φ|U′ : U′ ∼ //Y ′ × V ′ is a
relative holomorphic chart called the restriction of φ to U′ .

(ii) A relative holomorphic atlas A on X is complete if
– for all relative holomorphic chart φ in A, all the restrictions of φ are in A.
– for all finite family {φi : Ui

∼ //Yi × Vi }1≤i≤r of relative holomorphic charts in
A such that the open sets Ui are pairwise disjoint, then the relative holomorphic
chart

∐r
i=1 φi :

∐
Ui

∼ //
∐

(Yi × Vi) is in A.

(iii) If A is a relative holomorphic atlas on X, the completed atlas of A is the smallest
complete relative holomorphic atlas containing A.

(iv) If A and A′ are two relative holomorphic atlases on X, we say A refines A′ if
for any relative holomorphic chart φ : U ∼ //Y × V in A′ and any x in U , there
exists a neighbourhood Ux of x in U such that φ|Ux

is in A.

(v) Two relative holomorphic atlases A and A′ are equivalent if A refines A′ and
A′ refines A.

We define now relative differentiable spaces and relative analytic spaces.

Definition 2.7 (i) A relative differentiable space (resp. relative analytic space)
over B is the data of a separated topological space X endowed with a continuous
surjective map π : X // B and with a maximal relative atlas (resp. an equivalent
class of complete relative holomorphic atlas) over B.

(ii) If X is a separated topological space, if π : X // B is a continuous surjective
map and if A is a maximal relative atlas (resp. a complete relative holomorphic
atlas) on X, we denote by (X,A) the associated relative differentiable space
(resp. relative analytic space).

Remark 2.8 (i) If (X,A) is a relative differentiable space (resp. relative analytic
space) over B, the fibers

(
Xb

)
b∈B defined by Xb := π−1(b) are differentiable

(resp. complex) manifolds, but they do not form in general a fibration over B,
since the projection map π is not assumed to be proper.

(ii) The connected components of a relative differentiable space (resp. relative analytic
space) (X,A) are still relative differentiable spaces (resp. relative analytic spaces).
If X is connected, the dimension (resp. complex dimension) of Xb is independent
of b. We call it the relative real dimension (resp. relative complex dimension) of
X.
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(iii) If (X,A) is a relative differentiable space over B, then X is a differentiable
orbifold and the projection π : X // B is smooth.

Let us introduce some natural operations on relative analytic spaces.

Definition 2.9 (i) BASE CHANGE. Let (X,A) be a relative differentiable space
(resp. relative analytic space) over B and u : B′ // B be a smooth map. If A =

{φi : Ui
∼ //Yi × Vi }i∈I , if A′ = {φi ×B idB′ : Ui ×B B′ ∼ //Yi × u−1(Vi)}i∈I

and if u ∗(A) is the saturated (resp. completed) atlas of A′ , then
(
X×B B′, u ∗(A)

)
is a relative differentiable space (resp. relative analytic space) over B′ .

(ii) FIBER PRODUCT. Let (X,A) and (X′,A′) be two relative differentiable spaces
(resp. relative analytic spaces) over the same base B. If φ : U ∼ //Z × V and
φ′ : U′ ∼ //Z′ × V are two relative charts (resp. relative holomorphic charts) over
the same open set V , then φ×B φ

′ : U ×B U′ ∼ // (Z × Z′)× V is a relative chart
(resp. relative holomorphic chart) on X×B X′ . If A′′ is the relative atlas (resp.
relative holomorphic atlas) on X×B X′ consisting of such charts φ×B φ

′ and if
A×BA′ is the saturated (resp. completed) atlas of A′′ , then

(
X×B X

′,A×BA′
)

is a relative differentiable space (resp. relative analytic space).

(iii) RELATIVE TANGENT BUNDLE. Let (X,A) be a relative differentiable space (resp.
relative analytic space) over B, where A = {φi : Ui

∼ //Yi × Vi }i∈I . We define

a set T relX by T relX =
∐

b∈B TXb , and a relative differentiable (resp. relative

holomorphic) atlas A′ on T relX by A′ = {d relφi : T relUi
∼ //TYi × Vi }i∈I ,

where d relφi is the relative differential of φi . If T relA is the saturated (resp.
completed) atlas of A′ , then

(
T relX,T relA

)
is a relative differentiable space

(resp. relative analytic space) called the relative tangent bundle of X. As a
topological space, T relX is a topological vector bundle over X.

Relative analytic spaces are introduced in [44] by means of relative integrable structures:

Definition 2.10 Let X be a relative differentiable space over B. A relative integrable
complex structure J rel on X is a continuous section of End (T relX) satisfying the
following conditions:

– If φ : U ∼ //Y × V is any relative chart of X, the map J rel : Y × V // TY is
smooth.
– For every b in B, the map J rel

b : Xb
// End (TXb) defines an integrable complex

structure on Xb .
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The next proposition allows us to construct local holomorphic trivializations for relative
integrable complex structures.

Proposition 2.11 Let (X,A) be a relative differentiable space over B and J rel be a rela-
tive integrable complex structure on X. For every x in X, there exist a neighbourhood
Ux of x and a relative chart φ : Ux

∼ //W × V in A such that:

– W is an open subset of CN , where 2N is the relative real dimension of the connected
component of x in X.
– If Jst is the standard complex structure on CN and if b is any point in V , then

φb :
(
Ux ∩ Xb, J

rel
b

)
//
(
W, Jst

)
is a biholomorphism.

Proof Let Ũx be a neighbourhood of x , φ̃ : Ũx
∼ //Y × V be a relative chart, and put

φ̃(x) = (y0, v0). The relative integrable complex structure J rel defines a smooth family
(Jv)v∈V of integrable complex structures on Y . By the Newlander–Nirenberg theorem
with parameters, there exist a neighbourhood Uy0×Uv0 of (y0, v0) and smooth complex-
valued functions z1, . . . , zN on Uy0

× Uv0
such that for every v in Uv0 , (z1

v , . . . , z
N
v ) are

holomorphic coordinates on
(
Uy0 , Jv

)
(see [45, p. 271]). If Ux = φ̃−1

(
Uy0 × Uv0

)
, we

define φ on Ux by φ =
(
(z1, . . . , zN) ◦ φ̃ , π

)
.

Proposition 2.11 enables us to relate relative complex structures and relative analytic
spaces.

Proposition 2.12 Let (X,A) be a relative differentiable space over B. There is a
natural bijection between relative integrable complex structures on X and maximal
relative holomorphic atlases contained in A.

Proof If X is endowed with a structure of relative analytic space over B, Proposition
2.11 allows us to construct a relative holomorphic atlas on X and then the corresponding
saturated atlas. Conversely, if {φi : Ui

∼ //Zi × Vi }i∈I is a relative holomorphic atlas
on X, the complex structures of the Zi ’s define a relative integrable complex structure
on X.

As a corollary, if X is a relative analytic space over B, there exists a canonical relative
integrable complex structure on the underlying relative differentiable space.
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Relative integrable structures are introduced in [44] to deal with problems in almost-
complex geometry. Let us give some general results about relative integrable complex
structures associated with an almost-complex manifold.

Let (X, J) be an almost-complex compact manifold and B be a compact connected
differentiable orbifold. Recall that B carries a stratification with finitely many strata.
If Z is a closed subset of X × B, we say that Z is an incidence set if the following
conditions are satisfied:

– The map pr2 |Z : Z // B is surjective and finite.
– For each stratum Bλ of B, if Zλ = pr−1

2 (Bλ) ∩ Z , then Zλ is a submanifold of X×Bλ
and the map pr2 |Zλ : Zλ // Bλ is a covering map.

Let us introduce now some notations. Let g be a Riemannian metric on X , ε be a
positive integer and Z be an incidence set of X × B.

– If W is neighbourhood of Z in X × B (considered as a relative differentiable space
over B), Bg, ε(W) will denote the set of relative integrable complex structures J rel on
W such that ||J rel − J||C 0, g,W < ε.

– We put Bg, ε = lim−→
W, Z⊆W

Bg, ε(W).

Then we have:

Proposition 2.13 Let B be a compact differentiable orbifold, (X, J) be an almost-
complex compact manifold and Z be an incidence set in X × B. If g is a Riemannian
metric on X , there exists a positive real number ε0 such that for any positive ε smaller
than ε0 , Bg, ε is nonempty and weakly contractible in the following sense: for every
nonnegative integer p and every pair of smooth families

(
J rel

0, s

)
s∈Sp and

(
J rel

1, s

)
s∈Sp in

Bg, ε parameterized by the sphere Sp , there exists a smooth family
(
J rel

t, s
)

(t, s)∈[0,1]×Sp

parameterized by [0, 1]× Sp joining
(
J rel

0, s

)
and

(
J rel

1, s

)
.

This result is implicit in [45], although not stated in this degree of generality (see [45,
Prop. 4]). We provide a proof in § 7.

2.3 Construction of the almost-complex Hilbert scheme

First of all, we define relative Hilbert schemes.

Definition 2.14 Let (X,A) be a relative analytic space over B of relative complex
dimension two and J rel be the associated relative integrable complex structure. For
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any positive integer n, we define a set X[n]
rel by X[n]

rel =
∐

b∈B X
[n]
b , where X[n]

b is the
Hilbert scheme of n–points of Xb endowed with the integrable complex structure J rel

b .
If A = {φi : Ui

∼ //Yi × Vi }i∈I , if A′ = {φ[n]
i, rel : U[n]

i, rel
// Y [n]

i × Vi }i∈I and if A[n]

is the completed atlas of A′ , then
(
X[n]

rel,A
[n]) is a relative analytic space called the

relative Hilbert scheme of X.

Let us now recall the definition of Voisin’s almost-complex Hilbert schemes. Let (X, J)
be an almost-complex compact manifold of dimension four, g be a Riemannian metric
on X , n be a positive integer and Zn be the incidence set in X × X(n) defined by

(2–5) Zn = {(p; x) in X × X(n) such that p ∈ x}·

We use the notations introduced at the end of § 2.2. Let ε be any positive real number
smaller than the bound ε0 of Proposition 2.13. Then Bg, ε is nonempty.

Definition 2.15 Let W be a small neighbourhood of Zn in X × X(n) and J rel be a
relative integrable complex structure in Bg, ε(W). The topological Hilbert scheme X[n]

J rel

is the subset of the relative Hilbert scheme W [n]
rel defined by

X[n]
J rel = {(ξ; x ) in W [n]

rel such that x = Γx(ξ)},

where Γx : W [n]
x

// W (n)
x is the Hilbert–Chow morphism associated with the integrable

complex structure J rel
x .

Remark 2.16 (i) The topological Hilbert scheme X[n]
J rel depends only on the germ

of J rel along Zn , ie of the image of J rel in Bg, ε .

(ii) If W is a small neighbourhood of Zn , let {J rel
t }t∈B(0,r)⊆Rd be a smooth family

in Bg, ε(W). This family defines a relative integrable complex structure J̃ rel

on the relative analytic space W̃ = W ×X(n) (X(n) × B(0, r)). Then there exists
a natural relative topological Hilbert scheme over B(0, r) whose fibers are the(
X[n]

J rel
t

)
t∈B(0,r) , namely:(

X[n], {J rel
t }t∈B(0,r)

)
= {(ξ; x, t) in W̃[n]

rel such that x = Γx, t(ξ)},

where Γx, t : W [n]
x

// W (n)
x is the Hilbert–Chow morphism associated with the

complex structure J̃ rel
x, t .

To obtain a differentiable structure on X[n]
J rel , Voisin uses relative integrable structures in

a contractible subset B′ of Bg, ε satisfying some additional geometric conditions (see
[44, p. 711]). The main results she obtains are:
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Theorem 2.17 [44, Th. 5, Th. 6, Th. 3], [45, Th. 3] Let (X, J) be an almost-complex
compact four-manifold, J rel be a relative integrable structure in B′ and n be a positive
integer. Then

(i) X[n]
J rel has a natural differentiable structure. Furthermore, if J′ rel is another relative

integrable structure in B′ , there is a diffeomorphism between X[n]
J rel and X[n]

J′ rel

which is uniquely defined up to isotopy.

(ii) There is a canonical Hilbert–Chow map Γ : X[n]
J rel

// X(n) satisfying the fol-
lowing property: for any x in X(n) and any integrable complex structure in a
neighbourhood Ux of supp(x), Γ−1(x) is homeomorphic to the fiber at x of the
usual Hilbert–Chow morphism from U[n]

x to U(n)
x .

(iii) X[n]
J rel can be endowed with a stable almost-complex structure, and the associated

complex cobordism class of X[n]
J rel depends only on the deformation class of J .

(iv) If X is symplectic and J is compatible with the symplectic structure, X[n]
J rel is also

symplectic.

For arbitrary relative integrable structures, this theorem has the following topological
form:

Theorem 2.18 [23, Prop. 3.4, Prop. 3.10, Rem. 3.5]

(i) Let J rel be a relative integrable complex structure in Bg, ε . Then X[n]
J rel is a

topological manifold of real dimension 4n.

(ii) If W is a neighbourhood of Zn in X × X(n) and if {J rel
t }t∈B(0,r)⊆Rd is a

smooth path in Bg, ε(W), then the associated relative topological Hilbert scheme(
X[n], {J rel

t }t∈B(0,r)

)
over B(0, r) is a topological fibration (cf Remark 2.16 (ii)).

(iii) For any x in X(n) and any integrable structure J in a neighbourhood Ux of supp(x),
the Hilbert–Chow morphism Γ : X[n]

J rel
// X(n) is locally homeomorphic over a

neighbourhood of supp(x) to the classical Hilbert–Chow morphism from U[n]
x to

U(n)
x .

We can compare almost-complex Hilbert schemes corresponding to different relative
integrable complex structures. Let g and g′ be two Riemannian metrics on X , ε0 and
ε′0 be the bounds given by Proposition 2.13, ε and ε′ be positive real numbers smaller
than ε0 and ε′0 respectively and J rel , J′ rel be relative integrable complex structures
in Bg, ε and Bg′, ε′ . Then there exists a positive real number ε′′ smaller than ε such
that Bg, ε′′ is included in Bg′, ε′ . Since, by Proposition 2.13, Bg, ε , Bg′, ε′ and Bg, ε′′
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are nonempty, connected and simply connected, X[n]
J rel and X[n]

J′ rel are homeomorphic by
Theorem 2.18 (ii); and this homeomorphism is canonical up to isotopy.

Therefore, for every positive integer n, there exists a canonical ring H ∗
(
X[n],Q

)
(resp.

K
(
X[n])) such that for every relative integrable complex structure J rel in Bg, ε , the ring

H ∗
(
X[n]

J rel ,Q
)

(resp. the ring K
(
X[n]

J rel

)
) is canonically isomorphic to H ∗

(
X[n],Q

)
(resp.

to K
(
X[n]) ).

Theorem 2.18 (iii) implies that Göttsche’s classical formula for the Betti numbers of
Hilbert schemes of points also holds in the almost-complex case (see [22, Th. 3.9]).

2.4 Incidence varieties and Nakajima operators

If m and n are two positive integers, let

(2–6) Zn×m = {(p; x, y) in X × X(n) × X(m) such that p ∈ x ∪ y }·

Relative integrable structures in a neighbourhood of Zn×m are denoted by J rel
n×m .

Definition 2.19
(i) If J rel

1, n×m and J rel
2, n×m are two relative integrable structures in neighbourhoods

W1 and W2 of Zn×m , the product Hilbert scheme
(
X[n]×[m], J rel

1, n×m, J
rel
2, n×m

)
is

defined by(
X[n]×[m], J rel

1, n×m, J
rel
2, n×m

)
= {(ξ, ξ′; x, z ) in W [n]

1, rel ×X(n)×X(m) W[m]
2, rel

such that Γ1, x, z(ξ) = x and Γ2, x, z(ξ
′) = z}·

(ii) If m > n and if J rel
n×(m−n) is a relative integrable structure in a neighbourhood W

of Zn×(m−n) , the incidence variety
(
X[m, n], J rel

n×(m−n)

)
is defined by(

X[m, n], J rel
n×(m−n)

)
= {(ξ, ξ′; x, y ) in W[n]

rel ×X(n)×X(m−n) W [m]
rel

such that ξ ⊂ ξ′, Γx, y(ξ) = x and Γx, y(ξ′) = x ∪ y}·

As it is the case for topological Hilbert schemes, the product Hilbert schemes and
the incidence varieties are canonically defined up to homeomorphisms isotopic to the
identity if the relative integrable structures used to define them are chosen close enough
to J in C 0–norm.

From now on, we fix a Riemannian metric g on X and assume that all relative integrable
structures are sufficiently close to J in C 0–norm.
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Let J rel
n×(m−n) , J rel

n , J rel
m and J rel

n×m be relative integrable structures in respective neigh-
bourhoods W , W ′ , W ′′ and W̃ of Zn×(m−n) , Zn , Zm and Zn×m . We consider the
following compatibility conditions of relative analytic spaces:

(A) For every (x, y) in X(n) × X(m−n) , W ′x ⊆ Wx, y and J rel
n×(m−n), x, y |W′x

= J rel
n, x ; ie

W ′ ×X(n) (X(n) × X(m−n)) ⊆ W , where the base change map is the first projection.

If this condition holds, there is a natural morphism λ from
(
X[m, n], J rel

n×(m−n)

)
to(

X[n], J rel
n

)
.

(B) For every (x, y) in X(n) × X(m−n) , W ′′x∪ y = Wx, y and J rel
n×(m−n), x, y = J rel

m, x∪ y ; ie

W ′′ ×X(m) (X(n) × X(m−n)) = W , where the base change map is (x, y) � // x ∪ y.

If this condition holds, there is a canonical morphism ν from
(
X[m, n], J rel

n×(m−n)

)
to
(
X[m], J rel

m

)
.

(C) For every (x, y) in X(n) × X(m−n) , W̃x, x∪ y = Wx, y and J rel
n×(m−n), x, y =

J rel
n×m, x, x∪ y ; ie W̃ ×X(n)×X(m) (X(n) × X(m−n)) = W , where the base change

map is (x, y) � // (x, x ∪ y). If this condition holds, there is a natural embedding

of
(
X[m, n], J rel

n×(m−n)

)
into the product Hilbert scheme

(
X[n]×[m], J rel

n×m, J
rel
n×m
)
.

Each of these conditions can be satisfied for a suitable choice of relative integrable
complex structures (this is obvious for conditions (B) and (C); for condition (A), it is
necessary to use the gluing method developed in § 7). Unfortunately, conditions (A)
and (B) cannot hold at the same time, unless X carries an integrable complex structure.
Indeed, if n = 1 and m = 2, assume that we are given three relative integrable complex
structures J rel

1×1 , J rel
1 and J rel

2 such that
(
J rel

1 , J rel
1×1

)
satisfy (A) and

(
J rel

2 , J rel
1×1

)
satisfy

(B). Then, for all x and y in X ,

J rel
1, x |W′x ∩W′y

= J rel
1×1, x, y |W′x ∩W′y

= J rel
2, {x, y} |W′x ∩W′y

= J rel
1×1, y, x |W′x ∩W′y

= J rel
1, y |W′x ∩W′y

so that J rel
1 defines a global integrable complex structure on X .

If J rel
n×(m−n) is a relative integrable complex structure in a neighbourhood of Zn×(m−n) , let

us fix four relative integrable complex structures J rel
n , J rel

1, n×(m−n) , J rel
m and J rel

2, n×(m−n) in

respective neighbourhoods of Zn , Zn×(m−n) , Zm and Zn×(m−n) such that
(
J rel

n , J
rel
1,n×(m−n)

)
satisfies the compatibility condition (A) and

(
J rel

m , J rel
2, n×(m−n)

)
satisfies the compatibility

condition (B). For i = 1, 2, there is a homeomorphism between
(
X[m, n], J rel

m×(m−n)

)
and

(
X[m, n], J rel

i,m×(m−n)

)
which is canonical up to isotopy. In this way, we get two

continuous maps from
(
X[m, n], J rel

m×(m−n)

)
to
(
X[n]

J rel
n

)
and

(
X[m]

J rel
m

)
. Their homotopy

classes are canonical and are still denoted by λ and ν .
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The incidence varieties X[m, n] are locally homeomorphic to the integrable model U[m, n]

where U is an open set of C2 ; this allows us to put a stratification on each X[m, n] . In
this way, the X[m, n] are stratified topological spaces locally homeomorphic to analytic
spaces endowed with their natural stratifications, and so each of them has a fundamental
homology class.

The construction by Nakajima and Grojnowski of representations of the Heisenberg super-
algebra H(H ∗(X,Q)) of H ∗(X,Q) into H = ⊕n∈NH ∗

(
X[n],Q

)
via correspondence

actions of incidence varieties done in [35] and [24] also holds in the almost-complex
setting:

Theorem 2.20 [23, Def. 4.3, Th. 4.5] If (X, J) is an almost-complex compact four-
manifold, Nakajima operators {qi(α), i ∈ Z, α ∈ H ∗(X,Q)} can be constructed. They
depend only on the deformation class of J and satisfy the Heisenberg commutation
relations:

∀i, j ∈ Z, ∀α, β ∈ H ∗(X,Q),
[
qi(α), qj(β)

]
= i δi+j,0

(∫
X
αβ
)

idH .

Furthermore, these operators induce an irreducible representation of H
(
H ∗(X,Q)

)
in

H with highest weight vector 1.

Finally, we introduce relative incidence varieties, which are essential in § 4.1, 5.2, 6.2
and 6.3.

Definition 2.21 If m, n are two positive integers with m > n, if W is a neighbourhood
of Zn×(m−n) and if J rel

n×(m−n) is a relative integrable complex structure on W , W [m, n]
rel is

the subset of W [n]
rel defined by

W[m, n]
rel = {(ξ, ξ′; x, y) in W[n]

rel ×X(n)×X(m−n) W[m]
rel such that ξ ⊆ ξ′}·

If {φi : Ui
∼ //Ωi × Vi }i∈I is a maximal relative holomorphic atlas on W , then for all

i in I we have
(
φ[n]

i ×Vi
φ[m]

i
) [(

U[n]
i, rel ×Vi

U[m]
i, rel

)
∩W [m, n]

rel

]
= Ω[m, n]

i × Vi . Thus, for

m = n + 1, the relative incidence varieties W [m, n]
rel are relative analytic spaces.

3 Coherent sheaves on relative analytic spaces

In this part, the letters B and B′ always denote compact differentiable effective orbifolds.
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3.1 Operations on relatively coherent sheaves

We start by defining relative holomorphic functions.

Definition 3.1 Let (X,A) be a relative analytic space over B. A continuous complex-
valued function f defined on an open subset Ω of X is relatively holomorphic if
for any x in Ω and for any relative holomorphic chart φ : U ∼ //Z × V of A in a
neighbourhood of x , the function f ◦ φ−1 is smooth and holomorphic in the variables
of Z in a neighbourhood of φ(x).

The sheaf O rel
X of relatively holomorphic functions on X is a sheaf of rings on X.

Definition 3.2 Let (X,A) be a relative analytic space over B. A sheaf F of O rel
X –

modules is relatively coherent if there exists a relative holomorphic atlas Ã equivalent
to A such that for any relative holomorphic chart φ : U ∼ //Z × V in Ã, there exists
a coherent analytic sheaf F on Z such that F|U and φ−1

(
pr−1

1 F ⊗pr−1
1 OZ

O rel
Z×V

)
are

isomorphic as sheaves of O rel
Z×V –modules.

An equivalent definition of relatively coherent sheaves can be stated using gluing
conditions: if Ã = {φi : Ui

∼ //Zi × Vi }i∈I and if φij := φi ◦ φ−1
j are the associated

transition functions, a relatively coherent sheaf on X is given by a family of co-
herent sheaves {F i}i∈I on the smooth analytic sets {Zi}i∈I and a family of isomor-
phisms of sheaves of O rel

φj(Uij)
–modules between φ−1

ij

[(
F i⊗pr−1

1 OZi
O rel

Zi×Vi

)
|φi(Uij)

]
and(

F j ⊗pr−1
1 OZj

O rel
Zj×Vj

)
|φj(Uij)

satisfying the usual cocycle condition.

Remark 3.3 (i) Let F be a relatively coherent sheaf on X given by a family of
sheaves {Fi}i∈I . Then, for any b in B, if J is the set of the indices i in I such
that b belongs to Vi , the sheaves {Fi}i∈J on {Zi × b}i∈J patch together into a
coherent analytic sheaf on Xb , which we denote by Fb .

(ii) If (X,A) is a relative analytic space and if E is a locally-free sheaf of O rel
X –

modules, then E is relatively coherent. In particular T relX is relatively coherent
on X.

(iii) If (X,A) is a maximal relative analytic space, it is not difficult to prove that any
relatively coherent sheaf on X is in fact locally OX–free. This fact justifies the
use of non-maximal atlases.

Let us now introduce a class of morphisms between relative analytic spaces that is
well-adapted to relatively coherent sheaves.
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Definition 3.4 (i) Let (X,A) and (X′,A′) be two relative analytic spaces over B
and let f : X // X′ be a continuous map over B. Two relative holomorphic
charts φ : U ∼ //Z × V and φ′ : U′ ∼ //Z′ × V in A and A′ are f -compatible
if f (U) ⊆ U′ and if there exists a holomorphic map g : Z // Z′ such that the
following diagram commutes

U
f|U //

φ ∼
��

U′

∼ φ′

��
Z × V

(g, id)
// Z′ × V

(ii) Let (X,A) and (X′,A′) be two relative analytic spaces over B and let f : X // X′

be a continuous map over B. We say that f is a morphism when there exists a
relative atlas Ã equivalent to A such that for any relative holomorphic chart φ
in Ã, there exists a relative holomorphic chart φ′ in A′ such that and φ and φ′

are f –compatible.

(iii) Let (X,A) and (X′,A′) be two relative analytic spaces over B and B′ and
f : X // X′ be a continuous map. We say that f is a weak morphism if there
exist a smooth orbifold map u : B // B′ and a morphism f̃ : X // X′ ×B′ B
such that f is obtained by composing f̃ with the base change map from X′ ×B′ B
to X′ induced by u.

If f : X // X′ is a weak morphism, then the sheaf f−1O rel
X′ is a subsheaf of O rel

X .
Therefore we get a pullback functor f ∗ : Mod

(
O rel

X′
)

// Mod
(
O rel

X

)
given by the

formula f ∗F = f−1F ⊗
f−1O rel

X′
O rel

X .

To prove that many usual operations on Mod (O rel
X ) induce operations on relatively

coherent sheaves, we use a flatness lemma:

Lemma 3.5 Let W be an open subset of Rn , G be a finite group of diffeomorphisms
of W and Z be a smooth analytic set. If V = W/G, then O rel

Z×V is flat over pr−1
1 OZ .

Proof Let δ : W // V be the projection and M be a sheaf of pr−1
1 OZ –modules.

Then

(δ, id)−1(M⊗pr−1
1 OZ

O rel
Z×V

)
= (δ, id)−1M⊗pr−1

1 OZ

(
O rel

Z×W

)G

'
[
(δ, id)−1M⊗pr−1

1 OZ
O rel

Z×W

]G
.
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Since the functor F � // F G from Mod G
(
O rel

Z×W

)
to Mod

[(
O rel

Z×W

)G ] is exact, it
suffices to prove that O rel

Z×W is smooth over pr−1
1 OZ . Let k = b(n + 1)/2c. Then

W × Rk can be seen as an open subset W̃ in C(n+k)/2 . By [32, Th. 2 bis] O rel
Z×W̃

is

flat over O
Z×W̃

, and O
Z×W̃

is flat over pr−1
1 OZ . Thus O rel

Z×W̃
is flat over pr−1

1 OZ .

If q : Z × W̃ // Z ×W is the projection, q−1O rel
Z×W is a direct factor of O rel

Z×W̃
in

Mod
(
pr−1

1 OZ
)

, so that O rel
Z×W is flat over pr−1

1 OZ .

We obtain as a consequence:

Proposition 3.6 (i) Let (X,A) be a relative analytic space over B and F , G
be relatively coherent sheaves on X. Then for every nonnegative integer k ,
Tor k
O rel

X

(F ,G) and Ext k
O rel

X

(F ,G) are relatively coherent on X.

(ii) Let f : X // X′ be a weak morphism between two relative analytic spaces
(X,A) and (X′,A′), and G be a relatively coherent sheaf on X′ . Then for every
nonnegative integer k , Tor k

f−1O rel
X′

(f−1G,O rel
X ) is relatively coherent on X.

(iii) Let (X,A) be a relative analytic space over B, F be a relatively coherent
sheaf on X and u : B′ // B be a smooth map. If ũ : X×B B′ // X is the
associated base change morphism, then Tor k

ũ−1O rel
X

(
ũ−1F ,O rel

X×B B′
)

vanishes for
every positive integer k .

Proof (i) Since two equivalent relative holomorphic atlases always admit a common
equivalent refinement, there exists a complete relative holomorphic atlas Ã on X

equivalent to A such that for every relative holomorphic chart φ : U ∼ //Z × V in Ã,

F|U ' φ
−1(pr−1

1 F ⊗pr−1
1 OZ

O rel
Z×V

)
and G|U ' φ

−1(pr−1
1 G ⊗pr−1

1 OZ
O rel

Z×V

)
where F and G are coherent analytic sheaves on Z . Then(

F ⊗O rel
X

G
)
|U ' φ

−1(pr−1
1 (F ⊗OZ

G )⊗pr−1
1 OZ

O rel
Z×V

)
and

HomO rel
X

(F ,G)|U ' φ
−1(pr−1

1 HomOZ
(F ,G )⊗pr−1

1 OZ
O rel

Z×V

)
.

Since O rel
Z×V is flat over pr−1

1 OZ , for any nonnegative integer k , we obtain by derivation

Tor k
O rel

X

(F ,G)|U ' φ
−1(Tor k

OZ
(F ,G )⊗pr−1

1 OZ
O rel

Z×V

)
and

Ext k
O rel

X

(F ,G)|U ' φ
−1(Ext k

OZ
(F ,G )⊗pr−1

1 OZ
O rel

Z×V

)
.
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(ii) We can take refinements Ã and Ã′ of A and A′ such that for any relative
holomorphic chart φ : U ∼ //Z × V in Ã, there exists a relative holomorphic chart
φ′ : U′ ∼ //Z′ × V ′ in Ã′, a holomorphic map g : Z // Z′, a smooth map u : V // V ′

and a coherent analytic sheaf G on Z′ such that f (U) ⊆ U′ , φ′ ◦ f ◦ φ−1 = (g, u) and
G|U′ ' φ

′−1(pr−1
1 G ⊗pr−1

1 OZ′
O rel

Z′×V′
)

. Thus(
f−1G ⊗

f−1O rel
X′
O rel

X

)
|U
' φ−1

(
(g, u)−1[pr−1

1 G ⊗pr−1
1 OZ′
O rel

Z′×V′
]
⊗

(g,u)−1O rel
Z′×V′
O rel

Z×V

)
' φ−1

(
pr−1

1

(
g−1G ⊗g−1O

Z′
OZ
)
⊗

pr−1
1 OZ

O rel
Z×V

)
,

so that for any nonnegative integer k , Lemma 3.5 yields:

Tor k
f−1O rel

X′

(
f−1G,O rel

X

)
' φ−1

(
pr−1

1 Tor k
g−1O

Z′

(
g−1G,OZ

)
⊗

pr−1
1 OZ

O rel
Z×V

)
.

(iii) We can assume that X = Z × B, F = pr−1
1 F ⊗pr−1

1 OZ
O rel

Z×B and ũ = (id, u),

where Z is a smooth analytic space and F is a coherent analytic sheaf on Z .
Let (z, b′) be an element of Z × B′ , put b = u(b′), and let E

•
be a free resolu-

tion of F z . By Lemma 3.5, E
•
⊗Oz
O rel

z, b is a free resolution of Fz, b . Therefore,

the germ of Tor k
ũ−1O rel

X

(
ũ−1F ,O rel

X×B B′
)

at (z, b′) is the k–th cohomology group of(
E

•
⊗Oz
O rel

z, b

)
⊗
O rel

z, b
O rel

z, b′ . The latter complex being isomorphic to E
•
⊗Oz
O rel

z, b′ , the

result is again a consequence of Lemma 3.5.

Remark 3.7 Let F and G be two relatively coherent sheaves on a relative analytic
space X over B. Then for every b in B and for every nonnegative integer k , we have
Tor k(F ,G)b = Tor k

OXb
(Fb,Gb) and Ext k(F ,G)b = Ext k

OXb
(Fb,Gb). A similar result

holds for the Tor sheaves appearing in (ii).

3.2 Relative analytic subspaces and direct image

The definition of a relative analytic subspace runs as follows:

Definition 3.8 Let (X,A) be a relative analytic space over B and Z be a closed subset
of X. We say that Z is a relative analytic subspace (resp. smooth relative analytic
subspace) of X if there exists a relative holomorphic atlas Ã equivalent to A such that
for any holomorphic chart φ : U ∼ //Z × V in Ã with U ∩Z 6= ∅, there exists a closed
(resp. closed and smooth) analytic subspace Z′ of Z satisfying φ(U ∩ Z) = Z′ × V.
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For instance, the relative incidence varieties W[m, n]
rel introduced in Definition 2.21 are

relative analytic subspaces of W [n]
rel ×X(n)×X(m−n) W [m]

rel , they are smooth if m = n + 1.
We will study other examples in § 3.5.

Remark 3.9 If Z is a smooth relative analytic subspace of a relative analytic space
(X,A), then Z is also a relative analytic space: a complete relative holomorphic atlas
on Z is obtained by taking the restrictions to Z of the charts of A.

The forthcoming proposition is needed to associate relatively coherent sheaves with
relative analytic subspaces:

Proposition 3.10 Let n and k be positive integers, Ω and W be open subsets of Cn

and Rk respectively, and T be a reduced analytic subset of Ω. Assume that the ideal
sheaf of T is globally generated by holomorphic functions f1, . . . , fd on Ω.

– If g : Ω×W // C is a relatively holomorphic function on Ω × W such that
g|T×W ≡ 0, then for any (z0,w0) in Ω×W , there exist relatively holomorphic functions
φ1, . . . , φd in a neighbourhood Uz0,w0 of (z0,w0) such that g =

∑d
i=1 φi fi on Uz0,w0 .

– Furthermore, if G is a finite group of diffeomorphisms of W fixing w0 and if g is
G–invariant, then the functions φi can be chosen G-invariant too.

Proof Let (z0,w0) in Ω×W . For any z in Ω, let ĝw0
(z) be the formal Taylor expansion

of the function w � // g(z,w) at w0 . If we write ĝw0
(z) =

∑
|I|=kαI(z) (w− w0)I , the

hypotheses made on g imply that the functions αI are holomorphic on Ω and vanish
on T . Therefore for every multiindex I of length k , there exist holomorphic functions
αI1, . . . , αId in a Stein neighbourhood Uz0

of z0 such that αI =
∑d

i=1 αIi fi on Uz0
.

Hence we get ĝw0
=
∑d

i=1

(∑
|I|=k αIi (w− w0)I

)
fi in O(Uz0

)
[[

w− w0
]]

. If Si (resp.

f̂i,z0
) denotes the formal expansion of z � //

∑
|I|=k αIi(z) (w− w0)I (resp. fi ) at z0 in

C
[[

z − z0,w − w0
]]

(resp. in C
[[

z − z0
]]

) and if ĝz0,w0
denotes the formal Taylor

expansion of g at (z0,w0) in C
[[

z − z0,w − w0
]]

, then ĝz0,w0
=
∑d

i=1 Si f̂i,z0
. Thus

for any (z0,w0) in Ω×W , ĝz0,w0
is divisible by f̂1,z0

, . . . , f̂d,z0
in C

[[
z− z0,w− w0

]]
.

Since the fi ’s are analytic, it follows from [33, Th. 1.1’ p. 82] that there exist φ1, . . . , φd
in C∞(Ω) such that g =

∑d
i=1 φi fi . It remains to prove that the functions fi can be

chosen relatively holomorphic in a neighbourhood of any point in Ω×W.

If (z0,w0) is an element of Ω ×W and if r is an integer such that 0 ≤ r ≤ n, let us
consider the property (Pr ):
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(Pr )

There exist a neighbourhood Uz0,w0
of (z0,w0) in Ω ×W and smooth

functions φ1, . . . , φd on Uz0,w0
such that

– g =
∑d

i=1 φifi on Uz0,w0

– If r ≥ 1, 1 ≤ i ≤ d and 1 ≤ j ≤ r ,
∂φi

∂zj
≡ 0.

We have seen that (P0 ) is true. Fix r such that 0 ≤ r ≤ n− 1, and assume that (Pr )
holds. We consider a presentation O q

z0
// O d

z0
//
(
JT
)

z0
// 0 of the ideal sheaf

of T at z0 , where the first map is given by a matrix M in Md,q

(
Oz0

)
and the second one

by (f1, . . . , fd). If O rel
r denotes the sheaf of smooth functions on Ω×W holomorphic in

the first r variables, then O rel
r is flat over pr−1

1 OΩ (this is proved exactly as in Lemma
3.5). Thus we get an exact sequence

(3–1)
(
O rel

r
)q

z0,w0

M //
(
O rel

r
)d

z0,w0

(f1,...,fd)
//
(
O rel

r
)

z0,w0

Pick φ1. . . . , φd in
(
O rel

r
)

z0,w0
such that g =

∑d
i=1 φifi . Since g is relatively holomor-

phic,
∑d

i=1
∂φi

∂zr+1

fi ≡ 0. By the exactness of (3–1), there exists an element
(
ϕj
)

1≤j≤q

in
(
O rel

r
)q

z0,w0
such that for every i with 1 ≤ i ≤ d , ∂φi

∂zr+1

=
∑q

j=1 Mijϕj . Now

the map ∂

∂zr+1

:
(
O rel

r
)

z0,w0
//
(
O rel

r
)

z0,w0
is surjective, so that there exist functions(

γj
)

1≤j≤q in
(
O rel

r
)

z0,w0
such that for 1 ≤ j ≤ q,

∂ γj

∂zr+1

= ϕj . If φ̃i = φi−
∑d

j=1 Mijγj

then
∑d

i=1 φ̃i fi =
∑d

i=1 φifi = g in a small neighbourhood of the point (z0,w0) and
∂φ̃i

∂zr+1

= ∂φi

∂zr+1

−
∑d

i=1 Mij
∂ γj

∂zr+1

= 0, so that φ̃i is in
(
O rel

r+1

)
z0,w0

. This proves that (Pr+1 )

holds. By a finite induction, we obtain that (Pn ) holds. This means that φ1, . . . , φd are
relatively holomorphic in a neighbourhood of (z0,w0).

To prove the last statement, it suffices to replace for each i the function φi by the
G–invariant function φ̃i defined by φ̃i(z,w) = |G|−1∑

u∈G φi(z, u .w).

Proposition 3.11 Let X be a relative analytic space over B and Z be a relative analytic
subspace of X. If J rel

Z is the ideal sheaf of Z in O rel
X consisting of the relative

holomorphic functions vanishing on Z and if O rel
Z = O rel

X /J rel
Z is the structure sheaf

of Z, then J rel
Z and O rel

Z are relatively coherent on X.

Proof Since the result is local, we can assume that X = Z × V and that Z =

Z′ × V , where V is a differentiable orbifold, Z is a smooth analytic space and
Z′ is an analytic subset of Z . If JZ′ is the ideal sheaf of Z′ in Z , then J rel

Z =

pr−1
1 JZ′ .O

rel
X by Proposition 3.10. By Lemma 3.5, O rel

X is flat over pr−1
1 OZ , so that
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the equality pr−1
1 JZ′ .O

rel
X = pr−1

1 JZ′ ⊗pr−1
1 OZ

O rel
X holds. This implies that J rel

Z is

relatively coherent. Using again the fact that O rel
X is flat over pr−1

1 OZ , we obtain that
O rel

Z = pr−1
1 OZ′ ⊗pr−1

1 OZ
O rel

X , and thus the sheaf O rel
Z is relatively coherent too.

Let us make an important remark:

Remark 3.12 Let Z be any reduced analytic set and V be a differentiable orbifold.
Then it is possible to define a sheaf O rel

Z×V of relative holomorphic functions on Z × V
(which is a subsheaf of C 0

Z×V ) as follows: since we can argue locally, we assume that
there exists an open set U in some Cn such that Z is a reduced analytic subset of U .
Then we define O rel

Z×V as the structure sheaf of Z × V in U × V . Using Proposition
3.11, it is easy to prove that the definition in independent of U . This makes it possible
to construct singular relative analytic spaces, although we will not go any further in this
direction.

Following the strategy of [21, Ch. 1 § 3], we prove:

Proposition 3.13 Let f : X // X′ be a morphism between two relative analytic
spaces (X,A) and (X′,A′), Z be a relative analytic subspace of X such that f is finite
on Z and F be a relatively coherent sheaf on X supported in Z. Then f∗F is relatively
coherent on X′ .

Proof For any point x′ in X′ , let φ′ : U′ ∼ //Z′ × V be a relative holomorphic chart
of A′ in a neighbourhood U′ of x′ . Since f is finite on Z, there exists a relative
holomorphic chart φ : U ∼ //Z × V in a neighbourhood of f−1(x′) ∩ Z such φ and φ′

are f –adapted. Up to a refinement of A, we can assume that:

– φ(U) ⊆ U′ and φ−1(U′) ∩ Z ⊆ U .
– φ′ ◦ f ◦ φ−1 = (g, id), where g : Z // Z′ is holomorphic.
– φ(U ∩ Z) = Y × V , where Y is a reduced analytic subset of Z .
– The function g|Y : Y // Z′ is finite.
– The sheaf F|U is isomorphic to φ−1

(
pr−1

1 F ⊗pr−1
1 OZ

O rel
Z×V

)
, where F is a coherent

analytic sheaf on Z supported in Y .

Let us prove that the natural morphism

(3–2) pr−1
1

(
g∗F

)
⊗

pr−1
1 OZ′

O rel
Z′×V

// (g, id)∗
(

pr−1
1 F ⊗pr−1

1 OZ
O rel

Z×V

)
is an isomorphism. The function g being finite on Y and O rel

Z×V (resp. O rel
Z′×V ) being

flat over pr−1
1 OZ (resp. pr−1

1 OZ′ ), both members of (3–2) define exact functors from
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CohY (Z) to Mod
(
O rel

Z′×V

)
. Let JY be the ideal sheaf of Y . Since g is proper, we can

assume, after shrinking Z′ if necessary, that J N
Y F = 0 for N large enough. Using the

exact sequences

0 // J N+1
Y F // J N

Y F // J N
Y F/J

N+1
Y F // 0,

we see that it is sufficient to prove that (3–2) is an isomorphism when F is an OY –
module. Under this assumption, for any z′ in g(Y), we can take local OY –presentations
of F in a neighbourhood of the finite set g−1(z′) ∩ Y . Thus it is enough to prove
that (3–2) is an isomorphism when F = OY . If h = g|Y , this amounts to show that
the natural morphism from h∗OY ⊗pr−1

1 OZ′
O rel

Z′×V to (h, id)∗O
rel
Y×V is an isomorphism.

Since the problem is local, we can assume that there exist two positive integers m and n
and an open subset Ω of Cm such that Z′ is open in Cn , Y is a closed analytic subset of
Ω× Z′ and h is the restriction to Y of the projection from Cm × Cn to Cn .

We deal at first with the case m = 1. If (w, z′) denotes the coordinates on C × Cn ,
then for any z′ in h(Y),

(
h∗OY

)
z′ is free over Oz′ : a basis is given by the functions

1,w, . . . ,wd , where d is the degree of h (see [21, I § 2]). Since the general Weierstrass
division theorem remains valid for relative holomorphic functions, for any v in V , the
module

(
(h, id)∗O

rel
Y×V

)
z′,v is also free over O rel

z′, v with basis 1,w, . . . ,wd . This yields
the required isomorphism.

To conclude, we argue by induction on m. Let us write Ω = Ω′′ × Ω′ , where Ω′′

and Ω′ are open in C and Cm−1 respectively, and let p : Ω× Z′ // Ω′ × Z′ and
q : Ω′ × Z′ // Z′ be the natural projections. Then there exists an analytic hypersurface
S in Ω× Z′ containing Y such that p is finite on S . If Ỹ = p(Y), then Ỹ is an analytic
subset of Ω′ × Z′ and q is finite on Ỹ . By Proposition 3.11, O rel

Y×V is, as a sheaf of
O rel

(Ω×Z′)×V –modules, isomorphic to pr−1
1 OY ⊗pr−1

1 OΩ×Z′
O rel

(Ω×Z′)×V . Therefore the
result in the case m = 1 yields the isomorphism

p∗OY ⊗pr−1
1 OΩ′×Z′

O rel
(Ω′×Z′)×V ' (p, id)∗O

rel
Y×V .

Besides, we get another isomorphism by induction, namely

q∗
(
p∗OY

)
⊗

pr−1
1 OZ′

O rel
Z′×V ' (q, id)∗

(
p∗OY ⊗pr−1

1 OΩ′×Z′
O rel

(Ω′×Z′)×V

)
.

Putting these two isomorphisms together, we get the result.

3.3 Relative analytic K -theory

We are now going to introduce morphisms of relatively coherent sheaves. A natural idea
would be to consider relatively coherent sheaves on a relative analytic space (X,A) as
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a full subcategory of the abelian category Mod
(
O rel

X

)
of sheaves of O rel

X –modules on
X. Unfortunately, the resulting category would be non-abelian. Indeed, if X = Z × B
is trivial, if F is relatively coherent on X and if χ is a smooth cut-off function in
B, the multiplication by χ defines an endomorphism of F over O rel

X whose kernel
is far from being relatively coherent in general. Now, if A is given by the family of
relative holomorphic charts {φi : Ui

∼ //Zi × Vi }i∈I , another natural definition is to
glue together the abelian categories

(
Coh(Zi)

)
i∈I of coherent analytic sheaves on Zi .

This is what we do.

Definition 3.14 (i) A strict morphism between to relatively coherent sheaves F
and G on a relative analytic space (X,A) is a morphism u in Hom

O rel
X

(F ,G)

satisfying the following condition: there exists a relative holomorphic atlas Ã
equivalent to A such that for every relative holomorphic chart φ : U ∼ //Z × V
in Ã, there exist two coherent analytic sheaves F and G on Z as well as a
morphism v in HomOZ

(F ,G ) such that F|U ' φ−1
(
pr−1

1 F ⊗pr−1
1 OZ

O rel
Z×V

)
,

G|U ' φ−1
(
pr−1

1 G ⊗pr−1
1 OZ

O rel
Z×V

)
and the following diagram commutes up to

isomorphism:

F|U
u //

∼

G|U
∼

φ−1
(

pr−1
1 F ⊗pr−1

1 OZ
O rel

Z×V

)
φ−1(v⊗id) // φ−1

(
pr−1

1 G ⊗pr−1
1 OZ

O rel
Z×V

)
(ii) If X is a relative analytic space and Z is a closed subspace of X, we call Coh rel(X)

(resp. Coh rel
Z (X)) the subcategory of Mod

(
O rel

X

)
whose objects are relatively

coherent sheaves on X (resp. relatively coherent sheaves on X supported in Z)
and whose morphisms are strict morphisms.

If X is a relative analytic space and Z is a closed subset of X, the categories Coh rel(X)
and Coh rel

Z (X) are abelian subcategories of Mod
(
O rel

X

)
by Lemma 3.5.

In the sequel, the Grothendieck group of an abelian category C is denoted by K(C).

Definition 3.15 Let X be a relative analytic space and Z be a closed subset of X. The
relative analytic K–theory of X (resp. relative analytic K–theory of X with support in
Z) is defined by K rel(X) = K(Coh rel(X)) (resp. K rel

Z (X) = K(Coh rel
Z (X))).

As for coherent sheaves, we can define usual operations on relative analytic K–theory.
These definitions rely on Proposition 3.6 and Proposition 3.13.
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– PRODUCT. If X is a relative analytic space and Z is a closed subset of X, a product
from K rel(X) ⊗Z K rel(X) (resp. K rel(X) ⊗Z K rel

Z (X)) to K rel(X) (resp. K rel
Z (X)) is

defined by
F .G =

∑
k≥0

(−1)kTor k
O rel

X

(F ,G).

– DUAL MORPHISM. Let X be a relative analytic space and Z be a closed subset of
X. The dual morphism F � // F∨ from K rel(X) to K rel(X) (resp. from K rel

Z (X) to
K rel
Z (X)) is given by

F∨ =
∑
k≥0

(−1)kExt k
O rel

X

(
F ,O rel

X

)
.

– PULLBACK MORPHISM. Let f : X // X′ be a weak morphism between relative ana-
lytic spaces and Z′ be a closed subset of X′ . The pullback morphism (resp. the pullback
morphism with support) f ! : K rel(X′) // K rel(X) (resp. f ! : K rel

Z′ (X′) // K rel
f−1(Z′)(X

′) )
is defined by

f !G =
∑
k≥0

(−1)kTor k
f−1O rel

X′
(f−1G,O rel

X ).

– GYSIN MORPHISM. Let f : X // X′ be a morphism between two relative analy-
tic spaces and Z be a relative analytic subset of X such that f is finite on Z.
The Gysin morphism f∗ from K rel

Z (X) to K rel(X′) is induced by the exact functor
f∗ : Coh rel

Z (X) // Coh(X′).

We now list all the properties we need concerning the operations introduced above.

Proposition 3.16 (i) PRODUCT STRUCTURE. If X is a relative analytic space and
if Z is a closed subspace of X, then K rel(X) is a unitary ring and K rel

Z (X) is a
module over K rel(X). Besides, if F and G are relatively coherent sheaves on X

and if G is supported in Z, then

F ∨. G =
∑
i≥0

(−1)i Ext i
O rel

X

(F ,G) in K rel
Z (X).

(ii) FUNCTORIALITY. The pullback morphism (resp. Gysin morphism) in relative
K–theory is contravariant (resp. covariant) with respect to weak morphisms
(resp. with respect to morphisms). Besides, the pullback and the dual morphism
commute.

(iii) PROJECTION FORMULA. Let f : X // X′ be a morphism between two relative
analytic spaces and Z be a relative analytic subspace of X such that f is finite on
Z. If F is a relatively coherent sheaf on X supported in Z and G is a relatively
coherent sheaf on X′ , then f∗

(
F . f !G

)
= f∗F .G in K rel(X′).



30 Julien Grivaux

(iv) BASE CHANGE I. Let f : X // X′ be a morphism between two relative analytic
spaces over B, ∆ be a relative analytic space over B and Z′ be a relative analytic
subspace of X′ ×B ∆ such that the projection q : X′ ×B ∆ // X′ is finite on
Z′ . If f∆ = f ×B id∆ , we consider the cartesian diagram:

X×B ∆
f∆ //

p
��

X′ ×B ∆

q
��

X
f

// X′

If Z = f−1
∆ (Z′), then Z is a relative analytic subspace of X×B ∆ and p is finite

on Z. Besides, the pullback and Gysin morphisms

p∗ : K rel
Z

(
X×B ∆

)
// K rel(X), q∗ : K rel

Z′ (X′ ×B ∆) // K rel(X′),

f ! : K rel(X′) // K rel(X) and f !
∆ : K rel

Z′ (X′ ×B ∆) // K rel
Z

(
X×B ∆

)
are related through the formula f !q∗ = p∗f !

∆ .

(v) BASE CHANGE II. Let ∆ be a relative analytic space over B, f : X // X′ be a
morphism between two relative analytic spaces over B and assume that X′ is a
smooth relative analytic subspace of ∆. If f∆ = f ×B id∆ , consider the cartesian
diagram

X
(id, i◦f ) //

f

��

X×B ∆

f∆
��

X′
(id, i)

// X′ ×B ∆

Then the following pullback and Gysin morphisms

(id, i)∗ : K rel(X′) // K rel
X′ (X

′ ×B ∆), (id, i ◦ f )∗ : K rel(X) // K rel
X (X×B ∆),

f ! : K rel(X′) // K rel(X) and f !
∆ : K rel

X′ (X
′ ×B ∆) // K rel

X (X×B ∆)

are related through the formula f !
∆(id, i)∗ = (id, i ◦ f )∗f

! .

(vi) BASE CHANGE III. Let (X,A) be a relative analytic space over B, Z be a closed
subset of X, u : B // B′ be a smooth map and ũ : X×B B′ // X be the
associated base change morphism. Then the pullback functor ũ ∗ from Cohrel(X)
to Cohrel(X×B B′

)
(resp. from Cohrel

Z (X) to Cohrel
ũ−1(Z)

(
X×B B′

)
) is exact, and

ũ ! = ũ ∗ .
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Proof (i) If F , G and H are relatively coherent sheaves on X, there is a spectral
sequence (canonical from E2 ) such that

E p, q
2 = Tor p

O rel
X

(
Tor q
O rel

X

(F ,G),H
)
, E p, q

∞ = Grp Tor p+q
O rel

X

(F ,G,H)

and E p, q
2 vanishes on each component of X except for finitely many couples (p, q).

Furthermore, by Proposition 3.6 (i), the sheaves E p, q
2 are relatively coherent on X and

the morphisms d p, q
2 are strict. Thus, for all r ≥ 2, the sheaves E p, q

r are relatively
coherent and the morphisms d p, q

r are strict, so that∑
p, q≥0

(−1)p+qE p, q
2 =

∑
n≥0

(−1)n Tor n
O rel

X

(F ,G,H)

in K rel(X). This yields the associativity of the product. The proofs of the remaining
properties in (i) and of (ii) are essentially similar, using spectral sequences associated
with the composition of two functors.

The proofs of (iii), (iv) and (v) are performed in the same way. We detail the proof of
(iv).

(iv) For x in X, we take two relative holomorphic charts φ : U ∼ //Z × V and
φ′ : U′ ∼ //Z′ × V in neighbourhoods of x and f (x) such that φ and φ′ are f –
compatible. Let us write φ′ ◦ f ◦ φ−1 = (g, id), where g : Z // Z′ is holomorphic.
If δ1, . . . , δN are elements of ∆ such that q−1(f (x)) ∩ Z = ∪N

i=1

(
f (x), δi

)
, we choose

a relative holomorphic chart ψ : Uδ1,..., δN

∼ //Y × V in a neighbourhood of the δi ’s.
The local form of the diagram of (iv) is then:

Z × Y × V
(g, id, id) //

pr13

��

Z′ × Y × V

pr13
��

Z × V
(g, id)

// Z′ × V

Furthermore, we can assume that
(
φ′ ×V ψ

) [(
U′ × Uδ1,..., δN

)
∩ X

]
= Z × V , where

Z is an analytic subset of Z′ × Y and pr1 is finite on Z . Then for any coherent analytic
sheaf G on Z′ × Y supported in Z , we use Proposition 3.13 and we get

(g, id) ∗
[
pr13∗

(
pr−1

12 G ⊗pr−1
12 OZ′×Y

O rel
Z′×Y×V

)]
' (g, id) ∗

(
pr1∗ G ⊗pr−1

1 OZ′
O rel

Z′×V

)
' g ∗

(
pr1∗ G

)
⊗

pr−1
1 OZ

O rel
Z×V ' pr1∗

[
(g, id) ∗ G

]
⊗

pr−1
1 OZ

O rel
Z×V

' pr13∗
[
pr−1

12 (g, id) ∗ G ⊗
pr−1

12 OZ×Y
O rel

Z×Y×V

]
' pr13∗

[
(g, id, id) ∗

(
pr−1

12 G ⊗pr−1
12 OZ′×Y

O rel
Z′×Y×V

)]
.
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Taking the derivative with respect to G and using Lemma 3.5, we obtain the result.

(vi) This is an immediate consequence of Proposition 3.6 (iii).

3.4 Topological K–theory for relatively coherent sheaves

In § 3.3, we have constructed a theory for relative coherent sheaves as well as associated
operations. It remains to obtain cohomological information about these objects. To do
so, we construct global resolutions by complex vector bundles for relatively coherent
sheaves. We start with a general result:

Proposition 3.17 Let Y be a differentiable orbifold.

(i) Locally free sheaves of C∞Y –modules are projective elements in the category
Mod

(
C∞Y
)

. In particular, if 0 // F // G // H // 0 is an exact sequence
of sheaves of C∞Y –modules on Y and if H is locally free, then this sequence
globally splits.

(ii) If H is sheaf of C∞Y –modules admitting a finite free resolution in a neighbourhood
of any point of Y , thenH admits a finite locally free resolution in a neighbourhood
of any compact subset of Y .

(iii) Two finite locally free resolutions of a sheaf of C∞Y –modules are sub-resolutions
of a third one.

(iv) Let 0 // F // G // H // 0 be an exact sequence of sheaves of C∞Y –
modules such that G and H admit finite locally free resolutions on Y . Then
F admits a finite locally free resolution on Y and we can find three such
resolutions F

•
, G

•
and H

•
of F , G and H related by an exact sequence

0 // F•
// G•

// H•
// 0.

Proof (i) Let P , Q, H be sheaves of C∞Y –modules such that Q is a quotient of P and
H is locally free, and let π be in HomC∞Y

(H,Q). It is possible to lift π locally to a
morphism from H to P , and then globally using a partition of unity on Y .

(ii) Let K be a compact subset of Y . We choose a finite covering
(
Ui
)

1≤i≤d of K and
open sets

(
Vi
)

1≤i≤d such that for 1 ≤ i ≤ d , Ui is relatively compact in Vi and H
admits a finite free resolution on Vi . For each i, we multiply this resolution by a smooth
cut-off function equal to 1 on Ui and supported in Vi . We obtain in this way a complex
of sheaves

0 //
(
C∞Y
)niN // · · · · · · //

(
C∞Y
)ni1

πi // H // 0



Topological properties of Hilbert schemes of almost-complex four-manifolds (II) 33

on Y , which is exact in Ui . If E =
d⊕

i=1

(
C∞Y
)ni1 and if π =

d⊕
i=1

πi : E // H is the sum

of the πi ’s, then the morphism π is surjective in a neighbourhood of K . For 1 ≤ i ≤ d ,
let Ni and N denote the kernels of πi and π respectively. We have an exact sequence:

0 // Ni |Ui
// N |Ui

//
⊕
j6=i

(
C∞Ui

)nj1 // 0.

By (i), N |Ui
is isomorphic to Ni |Ui

⊕
(
C∞Ui

)∑
j6=i nj1 . Furthermore Ni |Ui

admits a finite
free resolution of length N − 1. Thus N admits a finite free resolution of length at
most N − 1 in a neighbourhood of every point in K and we can start the argument
again. After at most N steps, we obtain a locally free kernel.

(iii) Let H be a sheaf of C∞Y –modules and
(
Ei
)

0≤i≤N and
(
Fi
)

0≤i≤N be two finite
locally free resolutions of H on Y . Let us construct by induction a finite locally free
resolution G

•
of H on Y such that E

•
and F

•
are sub-resolutions of G

•
. We put

G0 = E0 ⊕ F0 , the map from G0 to H being obtained by adding the two maps from E0
and from F0 to H . If k is a positive integer smaller than or equal to N − 1, assume that
we have constructed

(
Gi
)

0≤i≤k as well as injections E
•

� � // G
•

and F•

� � // G
•

in degrees at most k . Then in the two diagrams

0 // Ek
//

��

Gk
//

��

Qk
//

��

0 and 0 // Fk
//

��

Gk
//

��

Rk
//

��

0

0 // Ek−1
//

��

Gk−1
//

��

Qk−1
//

��

0 0 // Fk−1
//

��

Gk−1
//

��

Rk−1
//

��

0

...

��

...

��

...

��

...

��

...

��

...

��
0 // E0

//

��

G0
//

��

Q0
//

��

0 0 // F0
//

��

G0
//

��

R0
//

��

0

0 // H //

��

H //

��

0 0 // H //

��

H //

��

0

0 0 0 0

all the lines and the columns are exact and Q0, . . . ,Qk,R0, . . . ,Rk are locally free by in-
duction. Let Nk = ker

(
Ek

// Ek−1

)
, N′k = ker

(
Fk

// Fk−1

)
, N′′k = ker

(
Gk

// Gk−1

)
,

Q̃k = ker
(
Qk

// Qk−1

)
and R̃k = ker

(
Rk

// Rk−1

)
. By breaking the exact sequences

of the two last columns into short exact sequences, we obtain that Q̃k and R̃k are locally
free. The two sequences

0 // Nk
// N′′k // Q̃k

// 0 and 0 // N′k // N′′k // R̃k
// 0
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are exact. By (i), N′′k ' Nk ⊕ Q̃k ' N′k ⊕ R̃k , and we can define Gk+1 by the formula
Gk+1 =

(
Ek+1 ⊕ Q̃k

)
⊕
(
Fk+1 ⊕ R̃k

)
.

If k = N , we end the resolution G• by putting GN+1 = N′′N .

(iv) If
(
G̃i
)

0≤i≤N and
(
Hi
)

0≤i≤N are locally free resolutions of G and H , let us construct

by induction locally free resolutions F• and G• of F and G such that G̃• is a quotient
of G• , together with an exact sequence 0 // F•

// G•
// H•

// 0.

Since H0 (resp. G̃0 ) is a projective object by (i), we can lift the map from H0 to H
(resp. from G̃0 to H) to a map π (resp. π̃ ) from H0 to G (resp. from G̃0 to H0 ). If
G0 = H0 ⊕ G̃0 , there is a natural surjective map from G0 to G obtained by adding π
and the map from G̃0 to G . Besides, (id, π̃) : G0

// H0 is surjective, we denote its
kernel by F0 .

If k is a positive integer smaller than or equal to N , assume that we have constructed(
Fi
)

0≤i≤k and
(
Gi
)

0≤i≤k, an exact sequence 0 // F•
// G•

// H•
// 0 and a

surjective morphism from G
•

to G̃
•

in degrees at most k . Let Nk = ker
(
Fk

// Fk−1

)
,

N′k = ker
(
Gk

// Gk−1

)
, N′′k = ker

(
Hk

// Hk−1

)
and Ñk = ker

(
G̃k

// G̃k−1

)
. We

have an exact sequence 0 // Nk
// N′k // N′′k // 0. If R

•
= ker

(
G

•
// G̃

•

)
and Sk = ker

(
Rk

// Rk−1

)
the sequence 0 // Sk

// N′k // Ñk
// 0 is exact, so

that N′k ' Sk ⊕ Ñk by (i). As above, we lift the map from Hk+1 to N′′k (resp. from
Sk ⊕ G̃k+1 to N′′k ) to a map πk (resp. π̃k ) from Hk+1 to N′k (resp. from Sk ⊕ G̃k to
Hk+1 ). If Gk+1 = Hk+1 ⊕ Sk ⊕ G̃k+1 , there is a natural surjection from Gk+1 to N′k
obtained by adding πk and the map from Sk ⊕ G̃k+1 to N′k . Then we define Fk+1 by
Fk+1 = ker

(
π̃k, id

)
.

If k = N , FN+1 = NN+1 and GN+1 = N′N+1 , so that F
•

and G
•

are locally free
resolutions of F and G .

We apply now this result in our context. If (X,A) is a relative analytic space, then
X is also a differentiable orbifold, and O rel

X is a subsheaf of C∞X . Therefore, we can
associate with every relatively coherent analytic sheaf F on X the sheaf F∞ defined
by F∞ = F ⊗

O rel
X

C∞X , which is a sheaf of C∞X–modules. This sheaf admits a finite
free resolution in a neighbourhood of any point of X, thanks to the lemma:

Lemma 3.18 Let U be an open subset of Rn , G be a finite group of diffeomorphisms
of U and Z be a smooth analytic set. If W = U/G, then C∞Z×W is flat over pr−1

1 OZ .

Proof As in Lemma 3.5, it suffices to prove that O rel
Z×U is flat over pr−1

1 OZ . If Y is a
real-analytic manifold, let CωY be the sheaf of real-analytic functions on Y . Then, CωZ is
flat over OZ , CωZ×U is flat over pr−1

1 C
ω
Z and C∞Z×U is flat over CωZ×U by [32, Th. 2].
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The Grothendieck group of the category of complex topological vector bundles on a
topological space Y will be called K(Y). Besides, the class in K(Y) of a complex vector
bundle E on Y will be denoted by [E]. Then Proposition 3.17 and Lemma 3.18 yield:

Proposition 3.19 If (X,A) is a relative analytic space and if F is a relatively coherent
sheaf on X, then the sheaf F∞ admits a finite locally free resolution in a neighbourhood
of any compact subset of X. Besides, if U is a relatively compact open subset of X and(
Ei
)

0≤i≤N is a locally free resolution of F∞ on U, then the element
∑N

i=0(−1)i
[
Ei
]

of K rel(U) is independent of E
•

and depends only on the class of F in K rel(X).

In conclusion, we can associate with each relatively coherent sheaf F on X a topological
class

[
F∞

]
in lim
←−
U

K(U), where U runs through all the relatively compact open subsets

of X. Furthermore, if Z is a closed subset of X and F is supported in Z, then the
topological class of F lies naturally in lim

←−
U

KU∩Z(U).

We are going to prove two fundamental properties of the topological class, namely the
functoriality by pullback and the homotopy invariance. We start with the first one.

Proposition 3.20 Let f be a weak morphism between two relative analytic spaces X

and X′ , Z be a relative analytic subspace of X′ and F be a relatively coherent sheaf on
X′ supported in Z. Then the pullback morphism

f ∗ : lim
←−

U′⊂⊂X′
KU′∩Z(U′) // lim

←−
U⊂⊂X

K
U∩f−1(Z)(U)

maps
[
F∞

]
to
[(

f !F
)∞].

Proof We can assume that F∞ admits a global locally free resolution on X′ . Let(
Ei
)

0≤i≤N be such a resolution. Then for every nonnegative integer k , the cohomol-
ogy sheaf of f ∗E

•
in degree k is Tor k

f−1C∞
X′

(
f−1F∞, C∞X

)
, which is isomorphic to

Tor k
f−1O rel

X′

(
f−1F ,O rel

X

)∞ by Lemma 3.5 and Lemma 3.18. We define the sheaves Nk

and Ik by Nk = ker
(

f ∗Ek
// f ∗Ek−1

)
and Ik = Im

(
f ∗Ek+1

// f ∗Ek

)
. Then we

have exact sequences

0 // Nk
// f ∗Ek

// Ik−1
// 0(3–3)

and

0 // Ik
// Nk

// Tor k
f−1C∞

X′

(
f−1F∞, C∞X

)
// 0.(3–4)
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If U is relatively compact in X, then the sheaves Tor i
f−1C∞

X′

(
f−1F∞, C∞X

)
admit, by

Proposition 3.19, a global locally free resolution on U. Since N0 = E0 , the repeated
use of Proposition 3.17 (iv) with the exact sequences (3–3) and (3–4) shows that the
sheaves Ni and Ii admit global locally free resolutions on U, and that the following
identities hold in K

U∩ f−1(Z)(U):[
f ∗Ek

]
=
[
Nk
]

+
[
Ik−1

]
and

[
Nk
]

=
[
Ik
]

+
[
Tor k

f−1C∞
X′

(
f−1F∞, C∞X

)]
.

As a consequence,
∑N

i=0(−1)i
[
f ∗Ei

]
=
∑N

i=0(−1)i
[
Tor i

f−1C∞
X′

(
f−1F∞, C∞X

)]
. This

yields the result.

We can now come to the homotopy invariance of the topological class:

Proposition 3.21 Let Y be a relative analytic space over B× [0, 1], R be a relative
analytic subspace of Y and F be a relatively coherent sheaf on Y supported in R.
Assume that the pair

(
R,Y

)
is topologically trivial over [0, 1] (ie for any t0 in [0, 1], if

X = Yt0 and Z = Rt0 , then there exists a homeomorphism between Y and X× [0, 1]
over B× [0, 1] mapping R to Z× [0, 1]). For every t in [0, 1], let it : Yt

// Y be the
natural inclusion. Then, via the homeomorphism between Yt and X, the topological
class

[
(i ∗t F)∞

]
in lim

←−
U⊂⊂X

KU∩Z (U) is independent of t .

Proof Let U be an open relatively compact subset of X, ϕ : X× [0, 1] // Y be
a homeomorphism trivializing the pair (R,Y) and let U′ = ϕ(U × [0, 1]). Then U′

is open and relatively compact in Y. We take a locally free resolution
(
Ei
)

0≤i≤N of
F∞ on U′ . By the homotopy invariance property for topological K–theory, the class∑N

i=0(−1)i
[
i ∗t F∞

]
in KU∩Z (U) is independent of t . By Proposition 3.16 (vi) and

Proposition 3.20, i ∗t E
•

is a locally free resolution of i ∗t F∞ in U. This yields the desired
result.

3.5 Relative incidence sheaves

Let (X, J) be an almost-complex compact four-manifold and n be a fixed positive integer.
If W , W ′ and W ′′ are small neighbourhoods of the incidence loci Zn×1 , Zn and Zn+1

introduced in (2–5) and (2–6), let J rel
n×1 , J rel

n and J rel
n+1 be relative integrable complex

structures on W , W ′ and W ′′ respectively. To simplify the notations, we put

X[n] = X[n]
J rel

n
, X[n+1] = X[n+1]

J rel
n+1

, X[n+1,n] = X[n+1,n]
J rel

n×1
, X[n]×[1] =

(
X[n]×[1], J rel

n×1, J rel
n×1

)
.
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Definition 3.22 The four relative incidence sets Yn , Yn+1 , Ỹn and Ỹn+1 are defined
by:

– Yn = {(ξ,w; x) in W ′ [n]
rel ×X(n) W ′ such that w ∈ supp(ξ)}

– Yn+1 = {(ξ,w; y) in W ′′ [n+1]
rel ×X(n+1) W ′′ such that w ∈ supp(ξ)}

– Ỹn = {(ξ,w; x, p) in W[n]
rel ×X(n)×X W such that w ∈ supp(ξ)}

– Ỹn+1 = {(ξ,w; x, p) in W [n+1]
rel ×X(n)×X W such that w ∈ supp(ξ)}

The relative incidence sets Yn , Yn+1 , Ỹn and Ỹn+1 are relative analytic subspaces of
W ′ [n]

rel ×X(n) W ′ , W ′′ [n+1]
rel ×X(n+1) W ′′ , W [n]

rel×X(n)×X W and W [n+1]
rel ×X(n)×X W respectively.

For instance, if {φi : Ui
∼ //Ωi × Vi }i∈I , where Vi and Ωi are open subsets of X(n) and

C2 respectively, is a maximal relative atlas on W ′ , the associated atlas on W ′ [n]
rel ×X(n) W ′

is the completed atlas of {φ[n]
i ×Vi

φi : U[n]
i ×Vi

Ui
∼ //Ω[n]

i × Ωi × Vi }i∈I . For any i
in I , let Yn, i be the incidence locus in Ω[n]

i × Ωi defined by (2–1). Then we have(
φ[n]

i ×Vi
φi
) [(

U[n]
i ×Vi

Ui
)
∩Yn

]
= Yn, i × Vi .

Definition 3.23 (i) The relative exceptional divisor Drel is the subset of W [n+1, n]
rel

defined by

Drel = {(ξ, ξ′; x, p) in W[n+1, n]
rel such that supp(ξ) = supp(ξ′)}·

(ii) The relative residual morphism ρ : W [n+1, n]
rel

// W is defined by

ρ
(
ξ , ξ′ ; x , p

)
=
(
supp

(
ξ/ξ′

)
; x, p)

(iii) The relative diagonal ∆rel is the subset of W ×X(n)×X W defined by

∆rel = {(w1, w2 ; x, p) in W ×X(n)×X W such that w1 = w2}·

The set Drel is a relative analytic subspace of W [n+1, n]
rel of relative codimension one, the

fibers Drel, x, p of Drel over X(n) × X being the usual exceptional divisors in W [n+1, n]
x, p

defined by (2–2). The ideal sheaf J rel
Drel

is locally free of rank one on W[n+1, n]
rel , so that

J ∞Drel
is a complex line bundle on W[n+1, n]

rel .

Let us give a list of notations which are extensively used in the sequel of this section as
well as in § 5.2 and § 6.
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Notations 3.24 SHEAVES

– The relatively coherent sheaves O rel
Yn

, O rel
Yn+1

, O rel
Ỹn

and O rel
Ỹn+1

(resp. J rel
Yn

, J rel
Yn+1

,

J rel
Ỹn

and J rel
Ỹn+1

) on W ′ [n]
rel ×X(n) W ′ , W ′′ [n+1]

rel ×X(n+1) W ′′ , W[n]
rel ×X(n)×X W and

W [n+1]
rel ×X(n)×X W defined by Proposition 3.11 are denoted by On , On+1 , Õn and Õn+1

(resp. Jn , Jn+1 , J̃n and J̃n+1 ).
– The ideal sheaf J rel

Drel
is denoted by L.

– The relatively coherent sheaf O rel
∆ rel

on W ×
X(n)×X

W is denoted by O∆ .

COHOMOLOGY CLASSES

– The restriction to X[n+1, n] of the first Chern class of L∞ in H2
(
X[n+1, n],Q

)
is

denoted by l.
– If 0 ≤ i ≤ 2n + 2, we define a class µi, n in H2i

(
X[n] × X,Q

)
by the formula

µi, n = ci
([
Õ∞n

])
|X[n]×[1] .

MORPHISMS

– The natural morphisms from W[n+1, n]
rel to W[n]

rel and W [n+1]
rel are denoted by φ and ψ

respectively.
– The natural projections from W

′[n]
rel ×X(n) W ′ (resp. W

′′[n+1]
rel ×X(n+1) W ′′ , resp.

W [n]
rel ×X(n)×X W , resp. W [n+1]

rel ×X(n)×X W , resp. W [n+1, n]
rel ×X(n)×X W ) to W

′[n]
rel (resp.

W
′′[n+1]
rel , resp. W [n]

rel , resp. W [n+1]
rel , resp. W [n+1, n]

rel ) are denoted by p (resp. q, resp.
p, resp. q, resp. p̃ ).
– The morphism ρ : W[n+1, n]

rel
// W has already been defined in 3.23 (ii).

– The morphism σ : W[n+1, n]
rel

// W [n]
rel ×X(n)×X W is defined by σ = (φ, ρ ).

– The morphism j : W [n+1, n]
rel

// W[n+1, n]
rel X(n)×XW is defined by j = (id, ρ).

– If f : X // X′ is a morphism of relative analytic spaces over X(n) × X , we define
fW by

fW = f ×
X(n)×X

idW : X×
X(n)×X

W // X′ ×
X(n)×X

W.

The relative incidence sheaves On , On+1 , Õn and Õn+1 are related if the relative
integrable complex structures J rel

n , J rel
n+1 and J rel

n×1 satisfy some compatibility conditions.

– If the compatibility condition (A) of § 2.4 is satisfied in the case m = n + 1, let
k : W ′ [n]

rel ×X(n)

(
X(n) × X

) � � //W [n]
rel be the associated injection. If r denotes the base

change morphism from W ′ [n]
rel ×X(n)

(
X[n] × X

)
to W ′ [n]

rel , then r ∗On = k ∗Õn and
r ∗Jn = k ∗J̃n .
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– If the condition (B) of § 2.4 is satisfied, a weak morphism s from W [n+1]
rel to W ′′ [n+1]

rel
can be obtained by composing the isomorphism W[n+1]

rel
∼ //W ′′ [n+1]

rel ×X(n+1)

(
X(n) × X

)
with the base change morphism from W ′′ [n+1]

rel ×X(n+1)

(
X(n) × X

)
to W ′′ [n+1]

rel . Then
s ∗On+1 = Õn+1 and s ∗Jn+1 = J̃n+1 .

The sheaves Õn and Õn+1 fit into an important exact sequence:

Proposition 3.25 Let X be the relative analytic space W [n+1,n]
rel ×

X(n)×X
W .

(i) There is a natural exact sequence on X:

0 // j∗L // ψ ∗W Õn+1
// φ ∗W Õn

// 0.

(ii) The relatively coherent sheaves j∗L and p̃ ∗L ⊗ ρ ∗WO∆ are isomorphic on X.

(iii) The three sheaves Tor i
ρ
−1
W O

rel
W

(
ρ−1

W O∆,O
rel
X

)
, Tor i

ψ−1
W O

rel

(
ψ−1

W Õn+1,O
rel
X

)
and

Tor i
φ−1

W O
rel

(
φ−1

W Õn,O
rel
X

)
vanish for any positive integer i.

Proof Using Proposition 3.6, the proposition is an immediate consequence of the
analogous results in the integrable case. For instance, the exact sequence of (i) is
obtained via relative holomorphic charts on W using the exact sequence (2–3).

We now turn to the computation of the classes µi, n .

Lemma 3.26 For every positive integer i, the classes µi, n are independent of the
relative integrable complex structure J rel

n .

Proof Let J rel
0, n×1 and J rel

1, n×1 be two relative integrable complex structures on a

neighbourhood W of Zn×1 such that ||J rel
0, n×1 − J||C 0, g,W and ||J rel

1, n×1 − J||C 0, g,W are

strictly smaller than the bound ε0 given in Proposition 2.13. Then there exist a
neighbourhood U of Zn×1 included in W as well as a relative integrable complex
structure J̃ rel

n×1 on U × [0, 1] (considered as a relative differentiable space over the base
X(n) × X × [0, 1]) such that J̃ rel

n×1 |U×{0} = J rel
0, n×1 |U and J̃ rel

n×1 |U×{1} = J rel
1, n×1 |U . If

X =
(
U × [0, 1], J̃ rel

n×1

)
, let us introduce the incidence set

Ŷn = {(ξ,w; x, p, t) in X[n] ×
X(n)×X×[0, 1]

X such that w ∈ supp ξ}·

Then Ŷn is a relative analytic subset of X[n] ×
X(n)×X×[0, 1]

X. Furthermore, for any

t in [0, 1], if it : X[n]
t ×X(n)×X×{t}

Xt
// X[n] ×

X(n)×X×[0,1]
X is the natural injection,
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then i ∗t O
rel
Ŷn

is the incidence sheaf Õn on U[n] ×
X(n)×X

U , where U is endowed with

the relative integrable complex structure J̃ rel
n×1 |U×{t} . Since the relative product Hilbert

scheme
(
X[n]×[1], J̃ rel

n×1

)
is a topological fibration over [0, 1], the required result is a

direct consequence of Proposition 3.21.

We compute now the cohomology classes µi, n . Let ρ : X[n+1, n] // X be the restriction
of pr1 ◦ ρ to X[n+1, n] . If λ is the canonical homotopy class in

[
X[n+1, n] : X[n]]

introduced in § 2.4, we define σ in
[
X[n+1, n] : X[n] × X

]
by σ = (λ, ρ).

Proposition 3.27 If 1 ≤ i ≤ 2n + 2, µi, n = (−1)iσ∗(l
i).

Proof Let us assume that
(
W, J rel

n×1

)
and

(
W ′, J rel

n

)
satisfy the compatibility condition

(A) of § 2.4 for m = n + 1. Then X[n]×[1] = X[n] × X . In this proof, we denote the two
relative analytic spaces W [n+1, n]

rel and W [n]
rel ×X(n)×X W by X and X′ respectively. The

homotopy class of the restriction of σ : X // X′ to X[n+1, n] is σ .

Let {φi : Ui
∼ //Ωi × Vi }i∈I , where Ωi and Vi are open subsets of C2 and X(n) × X

respectively, be a maximal relative holomorphic atlas on W . If ψi = φ[n+1, n]
i , if γi =

φ[n]
i ×Vi

φi and if Oi = U[n]
i, rel×Vi

Ui , then the family {ψi : U[n+1, n]
i, rel

∼ //Ω[n+1, n]
i ×Vi }i∈I

(resp. {γi : Oi
∼ //Ω[n]

i × Ωi × Vi }i∈I ) is a relative holomorphic atlas on X (resp. X′ ).

For any i in I , let Yn, i be the incidence locus in Ω[n]
i × Ωi defined by (2–2), and let

0 // Ai
// Bi be a locally free resolution of length two of the ideal sheaf JYn, i

(see
§ 2.1). By the very construction of global smooth resolutions for relatively coherent
sheaves (Proposition 3.19), we can assume, after shrinking W if necessary, that there
exists a locally free resolution 0 // A // B of length 2 of J̃ ∞n on X′ such that for
any i in I , 0 // γ −1

i A∞i // γ −1
i B∞i is a subresolution of 0 // A|Oi

// B|Oi

(by a slight abuse of notation, we write A∞i instead of pr−1
1 Ai⊗pr−1

1 OΩ[n]
i ×Ωi

C∞
Ω[n]

i ×Ωi×Vi

and B∞i instead of pr−1
1 Bi ⊗pr−1

1 OΩ[n]
i ×Ωi

C∞
Ω[n]

i ×Ωi×Vi
).

Let P(B) be the projective bundle of B (using Grothendieck’s convention), K be the
universal quotient line bundle on P(B), π : P(B) // W [n]

rel ×X(n)×X W be the projection
and s be the section of π ∗A ∗ ⊗K obtained via the morphism π ∗A // π ∗B // K .

Lemma 3.28 (i) The vanishing locus Z(s) of s is canonically isomorphic to X.

(ii) After changing base from X(n) × X to Xn × X , the section s is transverse to the
zero section.
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(iii) If j is the embedding of X into P(B), then j ∗K ' L∞ .

Proof (i) By Proposition 3.17 (i), we can split the injection of γ −1
i A∞i in A |Oi

.
If A |Oi

' γ −1
i
(
A∞i ⊕ Ri

)
is such a splitting, it induces another splitting B |Oi

'
γ −1

i
(
B∞i ⊕ Ri

)
. The resolution 0 // A |Oi

// B |Oi
is therefore isomorphic to

0 // γ −1
i
(
A∞i ⊕Ri

) Ni // γ −1
i
(
B∞i ⊕Ri

)
, where Ni =

(
γ −1

i Mi 0
0 id

)
. For any

point p in Ω[n+1, n]
i × Vi , we have an obvious bijection between the two sets {u in(

B∞i |p ⊕ Ri |p
) ∗ such that u vanishes on

(
A∞i |p ⊕ Ri |p

)
} and {u in

(
B∞i |p ⊕ Ri |p

) ∗
such that u ≡ 0 on Ri |p and u vanishes A∞i |p}. If we consider the embedding of
P
(
γ −1

i B∞i
)

in P
(
B|Oi

)
given by the splitting of B|Oi

, this means that Z(s) ∩ π−1(Oi)
lies in P

(
γ −1

i B∞i
)

. Furthermore, it is easy to see that the embedding of Z(s)∩π−1(Oi)

in P
(
γ −1

i B∞i
)

is independent of the splitting. If π̃ : P(Bi) // Ω[n]
i × Ωi is the

projection of the projective bundle of Bi , if s̃ is the section of π̃ ∗A ∗i (1) given by the

morphism π̃ ∗Ai
// π̃ ∗Bi

// OP(Bi)(1) and if δi : P
(
γ −1

i B∞i
) ∼ //P(B∞i ) is the

natural isomorphism induced by γi , then Z(s) ∩ π−1(Oi) = δ−1
i
(
Z (̃s )× Vi

)
. The zero

locus Z (̃s ) being canonically isomorphic to Ω[n+1, n]
i , we get a commutative diagram

P
(
γ −1

i B∞i
) ∼

δi

// P(B∞i )

U[n+1, n]
i, rel

?�

OO

∼
ψi

// Z (̃s )× Vi

?�

OO

Thus Z(s) ∩ π−1(Oi) ' U[n+1, n]
i, rel .

(ii) Let p be in
(
Ω[n]

i × Ωi
)
× Vi . We choose a neighbourhood Up × Vp of p such

that Ai , Bi and Ri are trivial on Up , Up and Up × Vp , of respective ranks r , r + 1
and m. Let q be a point in π̃−1(p) ∩

(
Z(̃s )× Vi

)
. We can find an affine hyperplane

H1 in C r+1 which does not contain zero and an hyperplane H2 in Cm such that the
open subset (H1 × H2 × Up) × Vp of P(B∞i ⊕ Ri) contains q. The restriction of
s to H1 × {0} × Up is a holomorphic map from H1 × Up to

(
C r
) ∗ corresponding

to the section s̃, and s : (H1 × H2 × Up)× Vp
//
(
C r ⊕ Cm

) ∗ can be expressed as
s(u1, u2, z; v)(α, β) = s̃(u1, z)(α) + u2(β). After changing base from X(n)×X to Xn×X ,
the variable v lies in the preimage of Vi in Xn × X , which is smooth. Since s̃ is
transverse to the zero section, the result ensues.

(iii) We write j on W[n+1, n]
i, rel as the composed of the following morphisms:

W [n+1, n]
i, rel

∼
ψi

//
(
Ω[n]

i × Ωi
)
× Vi

� � // P(Bi)× Vi ' P(B∞i ) �
� // P

(
B |Oi

)
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Since the restriction of OP(Bi)(1) to Ω[n]
i × Ωi is the ideal sheaf of the exceptional

divisor in Ω[n]
i × Ωi , the sheaves j ∗K and L∞ are isomorphic on W [n+1, n]

i, rel . It is then
a routine verification to check that these isomorphisms patch together into a global
isomorphism between j ∗K and L∞ .

We now finish the proof of Proposition 3.27. Let r : P(B)×X(n)×X

(
Xn × X

)
// P(B)

be the natural base change map. Point (ii) of Lemma 3.28 imply that Z(r ∗s) is Poincaré
dual to the top Chern class of r ∗

(
π ∗A ∗ ⊗ K

)
. Since the pull-back morphism r ∗ is

injective in cohomology with rational coefficients, Z(s) is Poincaré dual to the top
Chern class of π ∗A ∗ ⊗ K in H8n+8

(
P(B),Q

)
. Besides, if ε is the first Chern class

of K in H2
(
P(B),Q

)
, point (iii) of Lemma 3.28 imply that l = j ∗ε|X[n+1, n] . As σ is

proper, we get for 1 ≤ i ≤ 2n + 2:

σ∗(j
∗εi) = π∗j∗(j

∗εi)= π∗
(
[X] . εi)= π∗

(
cr(π

∗A ∗ ⊗K) . εi)=
r∑

k=0

ck(A ∗)π∗ εr+i−k

=
r∑

k=0

ck(A ∗) si−k(B ∗) = ci(A ∗ − B ∗) = (−1)ici
(
J̃ ∞n

)
= (−1)ici

(
Õ∞n

)
.

Let u (resp. v) denote the embedding of X[n+1, n] (resp. X[n] × X ) in X (resp. in X′ ).
Since σ∗σ

∗ = id and σ∗σ
∗ = id, we get

v ∗σ∗(j
∗εi) = σ∗σ

∗v ∗σ∗(j
∗εi) = σ∗u

∗σ ∗ σ∗(j
∗εi) = σ∗u

∗j ∗εi = σ∗l
i,

so that σ∗l
i = (−1)iv ∗ci

(
Õ∞n

)
= (−1)i µi, n .

4 The boundary operator

4.1 Lehn’s formula in the almost-complex case

Let (X, J) be an almost-complex compact four-manifold, and W ′ , W be respective
neighbourhoods of Zn and Zn×1 endowed with relative integrable complex structures
J rel

n and J rel
n×1 . If L is the invertible sheaf defined in Notations 3.24, let F be the

restriction of L∞ to X[n+1, n] . By the homotopy invariance of topological K–theory,
the class of F in K

(
X[n+1, n]) is independent of J rel

n×1 , and its first Chern class is l.

If {φi : Ui
∼ //Zi × Vi }i∈I is a maximal relative holomorphic atlas on W , the tautolog-

ical sheaves pr−1
1 O

[n]
Z[n]

i
⊗pr−1

1 OZ[n]
i

O rel
Z[n]

i ×Vi
patch together into a locally free sheaf T [n]

rel

on W [n]
rel . The restriction T [n] of T [n]

rel to X[n] satisfies the properties (see [23, Prop. 5.3,
Lemma 5.4, Prop. 5.5]):
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(i) The class of T [n] in K
(
X[n]) is independent of J rel

n .

(ii) The cohomology class −2c1
(
T [n]) in H2(X[n],Q) is Poincaré dual to the

fundamental cohomology class of ∂X[n] , where

∂X[n] = {(ξ; x) in X[n] such that there exists p in x with lengthp(ξ) ≥ 2}

is the so-called boundary of X[n] .

(iii) If λ and ν are the homotopy classes introduced in § 2.4 in the case m = n + 1,
then ν ∗ T [n+1] − λ ∗ T [n] = F in K

(
X[n+1, n]).

If m and n are positive integers with m > n, we define a class I [m, n]
T in K

(
X[m, n]) by

the formula I [m, n]
T = ν ∗ T [m] − λ ∗ T [n] . Then (iii) implies that I [n+1, n]

T and F are
equal in K

(
X[n+1, n]).

Let us recall Lehn’s definition of the boundary operator [26, Def. 3.8]:

Definition 4.1 Let H =
⊕

n≥0 H ∗
(
X[n],Q

)
.

(i) The boundary operator d : H // H is defined by

d
[
(αn)n≥0

]
=
(
c1
(
T [n]) ∪ αn

)
n≥0.

(ii) If A is an endomorphism of H, the derivative A′ of A is defined by the formula

A′ = [d,A] = d ◦ A− A ◦ d.

We now state a partial extension of Lehn’s main formula [26, Th. 3.10] for almost-
complex four-manifolds.

Theorem 4.2 Let (X, J) be an almost-complex compact four-manifold. Then there
exist classes (en)n≥0 in H2(X,Q) such that for all integers m, n and for all rational
cohomology classes α and β on X ,[

q′n(α), qm(β)
]

= −nm qn+m(αβ) + δn+m, 0

(∫
X

e|n|αβ
)

idH .

Proof Exactly as in [26, Lemma 3.9], we start by proving that correspondences
actions induced by homology classes on incidence varieties are stable under derivation.
We denote by PD the Poincaré duality map between the homology groups and the
cohomology groups of a compact topological manifold.

Lemma 4.3 Let m, n be two positive integers with m > n, u be a rational homology
class on X[m, n] and u∗ : H ∗

(
X[n],Q

)
// H ∗

(
X[m],Q

)
be the correspondence map

given by the formula u∗(τ ) = PD−1
[
ν∗(u ∩ λ ∗τ )

]
. Then

(
u∗
)′

=
[
u ∩ c1

(
I [m, n]
T

)]
∗ .
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Proof For every rational cohomology class τ on X[n] ,(
u∗
)′
τ = c1

(
T [m]) ∪ u∗τ − u∗

(
c1
(
T [n]) ∪ τ)

= PD−1
[(
ν∗(u ∩ λ ∗τ )

)
∩ c1

(
T [m])− ν∗(u ∩ λ ∗(c1

(
T [n]) ∪ τ))]

= PD−1
[
ν∗

(
u ∩

[(
ν ∗c1

(
T [m])− λ ∗c1

(
T [n])) ∪ λ ∗τ])]

= PD−1 ν∗

([
u ∩ c1

(
I [m, n]
T

)]
∩ λ ∗τ

)
=
[
u ∩ c1

(
I [m, n]
T

)]
∗(τ ).

By this Lemma, the proof of the theorem boils down to computing the commutator of
two correspondences. Lehn’s proof can be adapted exactly as we did in [23] for the
Nakajima relations. This yields (see [22, § 4.3] for a detailed exposition):

– For all integers m and n such that m + n is nonzero, there exists an excess multiplicity
µn,m in Z such that for all rational cohomology classes α and β on X , the commutation
relation

[
q′n(α), qm(β)

]
= µn,m qn+m(αβ) holds.

– For every nonnegative integer k , there exists an excess intersection class ek in
H2(X,Q) such that for every integer n and for all rational cohomology classes α and β
on X , the identity

[
q′n(α), q−n(β)

]
=
(∫

X e|n| αβ
)

idH holds.

The terms µn,m and ek are the excess contributions. The multiplicity µn,m can be
computed locally on X , so that Lehn’s proof is valid and gives µn,m = −nm.

Unlike the multiplicities µn,m , the excess classes ek involve the global geometry of X .
We compute these classes in § 4.3 under the additional assumption that X be symplectic.

Corollary 4.4 When α runs through a basis of H ∗(X,Q), the operators d and q1(α)
generate H from the vector 1.

Proof The corollary is a straightforward consequence of the commutation relations[
q′1(α), qm(1)

]
= −m qm+1(α), m > 0.
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4.2 Holomorphic curves in symplectic four-manifolds

Until now, we have only considered integrable structures in small open sets of (X, J).
To compute the excess classes en appearing in Theorem 4.2, we construct pseudo-
holomorphic curves in X for perturbed almost-complex structures. To do so we use the
following theorem of Donaldson, which is a symplectic analog of Kodaira’s embedding
theorem:

Theorem 4.5 [12, Th. 1] Let (V, ω) be a symplectic manifold of dimension 2n such
that ω is an integral class and let ω̃ be a lift of ω in H2(V,Z). For any sufficiently
large positive integer k , the Poincaré dual of kω̃ in H2n−2(V,Z) is the homology class
of a closed symplectic submanifold of V . More precisely, if J is an almost-complex
structure on V compatible with ω , there is a positive constant C such that for any
large integer k , there exist an almost-complex structure Jk on X and a Jk –holomorphic
submanifold Sk of codimension two in V such that kω̃ is Poincaré dual to Sk and that
||Jk − J||C 0 ≤ C/

√
k .

We apply this theorem to our situation:

Proposition 4.6 Let (X, ω) be a symplectic compact four-manifold, J be an adapted
almost-complex structure on X and N be the second Betti number of X . Then
there exist almost-complex structures

(
Ji
)

1≤i≤N arbitrary close to J in C 0–norm and
two-dimensional submanifolds

(
Ci
)

1≤i≤N such that :

(i) For any i with 1 ≤ i ≤ N , Ci is Ji –holomorphic and Ji is integrable in a
neighbourhood of Ci .

(ii) The homology classes of C1, . . . ,CN span H2(X,Q) over Q.

Proof Let α1, . . . , αN be closed differential two-forms on X such that the ω + αi ’s
are rational symplectic forms whose cohomology classes span H2(X,Q). Then there
exist almost-complex structures (J̃i)1≤i≤N on X such that for every i, J̃i is adapted to
ω + αi . Besides, if g is a Riemannian metric on X and if ε is a positive real number,
we can assume by choosing the αj ’s small enough that ||J̃i − J||C 0, g < ε for 1 ≤ i ≤ N .
Let m1, . . . ,mN be positive integers such that m1(ω+α1), . . . ,mN(ω+αN) are integral
classes. By Theorem 4.5, there exist a positive integer k , a family (J′i )1≤i≤N of almost-
complex structures on X and a family (Ci)1≤i≤N of two-dimensional submanifolds of
X such that for 1 ≤ i ≤ N , Ci is J′i –holomorphic, ||J′i − J̃i||C 0, g < ε and kmi[ω + αi]
is Poincaré dual to [Ci]. Thus, for each integer i between 1 and N , J′i defines an
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almost-complex structure on Ci , which is integrable since Ci is two-dimensional.
Furthermore, J′i endows the normal bundle NCi/X with the structure of a complex
vector bundle over the Riemann surface (Ci, J

′
i ). By the Koszul-Malgrange integrability

theorem [13, Th. 2.1.53], there exists a structure of holomorphic line bundle on NCi/X .
Let Ui be a tubular neighbourhood of Ci in X , diffeomorphic to a neighbourhood
of the zero section in NCi/X . Pulling back the integrable complex structure on NCi/X

by this diffeomorphism, we obtain an integrable complex structure J′′i on Ui whose
restriction to Ci is equal to J′i . Since we are free to restrict Ui , we can assume that
||J′′i − J′i ||C 0, g,Ui

< ε, so that ||J′′i − J||C 0, g,Ui
< 3ε. If ε is small enough, this implies

that there exist a relatively compact neighbourhood Vi of Ci in Ui as well as a smooth
family (Jt)0≤t≤1 of almost-complex structures on Vi such that J0 = J|Vi

, J1 = J′′i |Vi

and for every t in [0, 1], ||J − Jt||C 0, g,Vi
< 3ε. Let χ be a smooth real-valued function

on X supported in Vi such that χ ≡ 1 in a neighbourhood of Ci . We define an
almost-complex structure Ji on X by Ji(p) = Jχ(p)(p). Then Ji is integrable on Vi , Ci

is Ji –holomorphic and ||Ji − J||C 0 < 3ε.

4.3 Computation of the excess term in the symplectic case

Our aim in this section is to prove Lehn’s formula in full generality for symplectic
four-manifolds:

Theorem 4.7 Let (X, ω) be a symplectic compact four-manifold and J be is an
almost-complex structure compatible with ω . If n is a nonnegative integer, the excess
contribution en of Theorem 4.2 is given by

en =
1
2

n2(n− 1)c1(X).

This means that for all integers n, m and for all rational cohomology classes α and β
on X , [

q′n(α), qm(β)
]

= −nm
{
qn+m(αβ)− |n| − 1

2
δn+m,0

(∫
X

c1(X)αβ
)

idH
}
·

In the integrable case, the statement of the theorem is [26, Prop. 3.15], with slightly
different notations. We start by an outline of Lehn’s original proof [26, § 3.4], then we
show how to adapt it in the symplectic case. In the sequel, if Z is a triangulable cycle in
a topological manifold Y , we denote by [Z] the cohomological cycle class of Z .

If X is a smooth projective surface and if C is a smooth algebraic curve on X , a result of
Grojnowski (see Lemma 4.8 below) describes explicitly the class

[
C[n]] in H2n

(
X[n],Q

)
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in terms of the classes qi1
([C]) . . . qiN

([C]) . 1, where i1, . . . , iN are positive integers of
total sum n.

Let X[n]
0 be the set of elements in X[n] whose support is a single point. If ∂C[n] denotes

the intersection C[n] ∩ ∂X[n] , the term I =

∫
X[n]

[
X[n]

0

]
.
[
∂C[n]] can be computed in two

different ways:

(i) The integral I is equal to q−n(1)
([
∂C[n]]). Since C[n] and ∂X[n] intersect generically

transversally,
[
∂C[n]] =

[
∂X[n]] . [C[n]] = −2 c1(Tn) .

[
C[n]] = −2 d

([
C[n]]). Thus,

I is a linear combination of terms q−n(1) qi1
([C]) . . . q′ik

([C]) . . . qiN
([C]) . 1, where

i1, . . . , iN are positive integers of total sum n. These terms vanish except in two cases:

– N = 1, i1 = n. Then q−n(1) q′n([C]) . 1 = −
∫

X
en . [C].

– N = 2, i1 + i2 = n. Then q−n(1) qk([C]) q′n−k([C]) . 1 = 0 and

q−n(1) q′k([C]) qn−k([C]) . 1 = −nk qk−n([C]) qn−k([C]) . 1 = nk(n− k) [C]2.

This computation gives I =
1
n

∫
X

en . [C] +

(
n
2

)
[C]2 .

(ii) The cycle C[n] intersects transversally X[n]
0 in its smooth locus. Besides, the

intersection C[n] ∩ X[n]
0 is C[n]

0 , which is canonically isomorphic to C . Therefore

I =

∫
X[n]

[
X[n]

0

]
.
[
C[n]] . [∂X[n]] = deg C

[
O

X[n]

(
∂X[n])] = deg C

[
O

C[n]

(
∂C[n])], which

is −n(n− 1) deg C KX by direct computation.

The excess terms en lie in the Neron-Severi group of X so that it is enough to show

that for every smooth algebraic curve C ,
∫

X

[
en −

1
2

n2(n− 1) c1(X)
]
. [C] = 0. This is

proved by comparison of the two expressions obtained for I .

Proof of Theorem 4.7. If γ is a rational cohomology class on X of even degree, we
define the vertex operators

(
Sm(γ)

)
m≥0 acting on H by the formula

∑
m≥0

Sm(γ) tm = exp

(∑
n>0

(−1)n−1

n
qn(γ) tn

)
.

Since γ is of even degree, the operators
(
qi(γ)

)
i>0 commute in the usual sense, so that

the definition of Sm(γ) is unambiguous. The following lemma is due to Grojnowski
[24] in the integrable case; we refer the reader to [36, § 9.3] for a detailed exposition.

Lemma 4.8 Let J̃ be an almost-complex structure on X in the deformation class
of J , and let C be a J̃–holomorphic curve on X . Assume that J̃ is integrable in
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a neighbourhood of C . Then for any positive integer n,
[
C[n]] = Sn

(
[C]
)
. 1 in

H2n
(
X[n],Q

)
.

Proof Let V be a small neighbourhood of C in X such that J̃ is integrable on V , U be a
relatively compact neighbourhood of C in V , m and n be two positive integers such that
m > n and J rel

n×(m−n) be a relative integrable complex structure in a neighbourhood W of

Zn×(m−n) . If W̃ = V ×U(n) ×U(m−n) , let us assume that W̃ ⊆ W , that J rel
n×(m−n)|W̃ = J̃

and that J rel
n×(m−n) is close to J̃ in C 0–norm. Then W̃ [m, n]

rel ∩
(
X[m, n], J rel

n×(m−n)

)
is exactly

the usual incidence variety U[m, n] , where U is endowed with the integrable complex
structure J̃ . We denote by q̂i(α) the usual Nakajima operators on U , in order to
distinguish them from the almost-complex Nakajima operators on X . Then we have a
commutative diagram:

H ∗c
(
U[n],Q

)
//

q̂m−n([C])
��

H ∗
(
X[n],Q

)
qm−n([C])
��

H ∗c
(
U[m],Q

)
// H ∗

(
X[m],Q

)
Besides q̂n([C]) . 1 lies in H ∗c

(
U[n],Q

)
and its image in H ∗

(
X[n],Q

)
is qn([C]) . 1.

Since the identity of the lemma holds in H2n
c
(
U[n],Q

)
for the classical Nakajima

operators, we obtain the result.

If (C, J̃) satisfies the hypotheses of Lemma 4.8, Lehn’s computations recalled above

apply verbatim and give
∫

X

[
en −

1
2

n2(n − 1) c1(X)
]
. [C] = 0. By Proposition 4.6,

H2(X,Q) is spanned by cohomology classes of such holomorphic curves. Since the

intersection form of X is nondegenerate, we get en =
1
2

n2(n− 1) c1(X).

The derivative of the Nakajima operators can be explicitly expressed using the Virasoro
operators Ln(α) defined in [26, § 3.1]:

Corollary 4.9 If (X, ω) is a symplectic compact four-manifold and if J is a compatible
almost-complex structure, then for every n in Z,

q′n(α) = nLn(α)− 1
2

n(|n| − 1)qn
(
c1(X)α

)
.

For the proof, see [26, p. 180].
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5 The ring structure of H∗
(
X[n],Q

)
5.1 Geometric tautological Chern characters

Let (X, J) be an almost-complex compact four-manifold, n be a positive integer and λ,
ν be the homotopy classes in

[
X[n+1, n] : X[n]] and

[
X[n+1, n] : X[n+1]] introduced in

§ 2.4.

If E is a complex vector bundle on X , it is possible to associate with E a sequence
of tautological vector bundles

(
E [n]

)
n>0 on X[n] . These tautological bundles are

constructed in [23, § 5] using relative holomorphic structures on E , and their classes
in complex K–theory are shown to be independent of these auxiliary structures [23,
Prop. 5.3]. This construction yields tautological morphisms from K(X) to K

(
X[n]).

If F is the class in K
(
X[n+1, n]) defined at the beginning of § 4.1, then the tautological

bundles E [n] and E [n+1] are related through the identity ν ∗E [n+1] = λ ∗E [n] +ρ ∗E⊗F
in K

(
X[n+1, n]), which is a K –theoretical analog of (2–4) (see [23, Prop. 5.5]). This

gives in Heven(X[n+1, n],Q
)

the relation

ν ∗
(
ch
(
E [n+1])) = λ ∗

(
ch
(
E [n]))+ ρ ∗ ch(E) . ch(F).

Lemma 5.1 For every class α in Heven(X,Q) and every positive integer n, there exists
a unique class G(α, n) in Heven(X[n],Q

)
such that G(α, 1) = α and for every positive

integer n,
ν ∗G(α, n + 1)− λ ∗G(α, n) = ρ ∗α . ch(F).

Proof The Chern character on X gives an isomorphism between K(X) ⊗Z Q and
Heven(X,Q). Therefore, we can define the classes G(α, n) in Heven

(
X[n],Q

)
as follows:

if y is the unique class in K(X)⊗Z Q such that ch(y) = α , then G(α, n) = ch
(
y [n]).

Furthermore, G(α, n) is unique since ν∗ν
∗ = 1

n+1 id.

5.2 Virtual tautological Chern characters

In this section, we extend Lemma 5.1 to odd cohomology classes. We adapt the method
originally developed in the projective case by Li, Qin and Wang in [30, § 5].

Proposition 5.2 For every class α in H ∗(X,Q) and every n in N ∗ , there exists a
unique class G(α, n) in H ∗

(
X[n],Q

)
such that G(α, 1) = α and for every positive

integer n,
ν ∗G(α, n + 1)− λ ∗G(α, n) = ρ ∗α . ch(F).
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Remark 5.3 If X is a projective surface, if Yn is the incidence locus in X[n] × X and
if td(X) is the Todd class of X , then G(α, n) = pr ∗1

[
ch(OYn) . pr ∗2 α . pr ∗2 td(X)

]
(see

[30, Lemma 5.8]).

Proof We adopt the notations of § 3.5, especially those of 3.24.

– The projection from W (resp. W ′ , resp. W ′′ ) to X is denoted by t (resp. t′ , resp. t′′ ).
– The projection from W ′[n]

rel ×X(n) W ′ (resp. W ′′[n+1]
rel ×X(n+1) W ′′ , resp. W[n]

rel ×X(n)×X W,

resp. W [n+1]
rel ×X(n)×X W , resp. W[n+1, n]

rel ×X(n)×X W ) to W ′ (resp. W ′′, resp. W, resp. W,
resp. W ) is denoted by π1 (resp. π2 , resp. π3 , resp. π4 , resp. π5 ).
– The first and seconde projections from W ×X(n)×X W to W are denoted by π6 and π7 .

Thanks to Proposition 3.19, we can assume that O∞n , O∞n+1 , Õ∞n and Õ∞n+1 admit
global smooth locally free resolutions. Let µn (resp. µn+1 , resp. µ̃n , resp. µ̃n+1 ) be the
Chern character of the relative incidence sheaf On (resp. On+1 , resp. Õn , resp. Õn+1 )
in H ∗Yn

(
W ′[n]

rel ×X(n) W ′
)

(resp. H ∗Yn+1

(
W ′′[n+1]

rel ×X(n+1) W ′′
)

, resp. H ∗
Ỹn

(
W [n]

rel×X(n)×X W
)

,

resp. H ∗
Ỹn+1

(
W [n+1]

rel ×X(n)×X W
)

). Since p (resp. q, resp. p, resp. q) is finite on Yn

(resp. Yn+1 , resp. Ỹn , resp. Ỹn+1 ), we can define six cohomology classes as follows:

– K(α, n) = p∗
[
µn . π

∗
1 t′ ∗(α . td(X))

]
in H ∗

(
W ′[n]

rel ,Q
)
,

– K(α, n + 1) = q∗
[
µn+1 . π

∗
2 t′′ ∗(α . td(X))

]
in H ∗

(
W ′′[n+1]

rel ,Q
)
,

– K̃(α, n) = p∗
[
µ̃n . π

∗
3 t ∗(α . td(X))

]
in H ∗

(
W [n]

rel,Q
)
,

– K̃(α, n + 1) = q∗
[
µ̃n+1 . π

∗
4 t ∗(α . td(X))

]
in H ∗

(
W [n+1]

rel ,Q
)
,

– G(α, n) = K(α, n)
|X[n] in H ∗

(
X[n],Q

)
,

– G(α, n + 1) = K(α, n + 1)
|X[n+1] in H ∗

(
X[n+1],Q

)
.

Then, by Proposition 3.10 (ii),

ψ ∗K̃(α, n + 1)− φ ∗K̃(α, n) = p̃∗
[
(ψ ∗W µ̃n+1 − φ ∗W µ̃n) . π ∗5 t ∗ (α . td(X))

]
= p̃∗

[
p̃ ∗ ch(L) . ρ ∗W ch

([
O∞∆

])
. ρ ∗W π ∗7 t ∗ (α . td(X))

]
.

Since ch
([
O∞∆

])
is supported in ∆ rel , for every β in H ∗

(
W ×X(n)×X W,Q

)
, we obtain

that ch
([
O∞∆

])
. π ∗6 β = ch

([
O∞∆

])
. π ∗7 β . Using the diagram

W[n+1, n]
rel ×X(n)×X W

ρ ∗W //

p̃

��

WX(n)×XW

π6

��
W[n+1, n]

rel ρ
// W
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we get

ψ ∗K̃(α, n + 1)− φ ∗K̃(α, n) = ch(L) p̃∗ ρ
∗
W
[
ch
([
O∞∆

])
. π ∗6 t ∗ (α . td(X))

]
= ch(L) ρ ∗

(
π6∗ ch

([
O∞∆

])
. t ∗(α . td(X))

)
.

Lemma 5.4 (i) If t̃ = t ×X(n)×X t : WX(n)×XW // X × X and if i : X // X × X

is the diagonal injection, then ch
([
O∞∆

])
= t̃ ∗ i∗ td(X)−1 .

(ii) λ ∗G(α, n) = φ ∗K̃(α, n)|X[n+1, n] .

(iii) ν ∗G(α, n + 1) = ψ ∗K̃(α, n + 1)|X[n+1, n] .

Proof (i) The class
[
O∞∆

]
in K∆ rel

(
WX(n)×XW

)
is the pullback by the map t̃ of the

class
[
C∞∆X

]
in K∆X

(X × X). Besides, the differentiable Grothendieck–Riemann–Roch
theorem for immersions [4, Th. 3.3] yields ch

([
C∞∆X

])
= i∗ td(X)−1 .

(ii) If
(
W, J rel

n×1

)
and

(
W ′, J rel

n

)
satisfy the compatibility condition (A) of § 2.4, then

we have λ ∗G(α, n) = φ ∗K̃(α, n)|X[n+1, n] . To conclude in the general case, we argue
exactly as in Lemma 3.26.

(iii) The proof is the same as (ii), replacing condition (A) by condition (B).

By (i), we get π6∗ ch
([
O∞∆

])
= π6∗ t̃ ∗ i∗ td(X)−1 = t ∗ pr1∗ i∗ td(X)−1 = t ∗ td(X)−1 ,

so that ψ ∗K̃(α, n + 1) − φ ∗K̃(α, n) = ch(L) ρ ∗ t ∗α . By the points (ii) and (iii), we
obtain the relation λ ∗G(α, n)− ν ∗G(α, n + 1) = ch(F) . ρ ∗α . This finishes the proof
of Proposition 5.2.

5.3 The ring structure and the crepant resolution conjecture

In this section, X is a symplectic compact four-manifold endowed with a compatible
almost-complex structure.

We introduce operators acting on H =
⊕

n∈N H ∗
(
X[n],Q

)
by cup product with the

components of the virtual tautological Chern characters constructed in § 5.2.

If α is a homogeneous rational cohomology class on X and if i, n are positive integers,
we denote by Gi(α, n) the (|α|+2i)–th component of G(α, n) and by Si(α) the operator
on H that acts by cup product with Gi(α, n) on H∗(X[n],Q).

We now state a result, originally proved by Lehn for geometric tautological Chern char-
acters [26, Th. 4.2] and generalized by Li–Qin–Wang for virtual ones [30, Lemma 5.8].
We include a proof for the sake of completeness.
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Proposition 5.5 For all homogeneous rational cohomology classes α , β on X and for
any positive integer k ,

[
Sk(α), q1(β)

]
= 1

k! q
(k)
1 (αβ).

Proof Let α , β be homogeneous rational cohomology classes on X and n be a
positive integer. The operator q1(β) : H ∗

(
X[n],Q

)
// H ∗

(
X[n+1],Q

)
is given by

q1(β) . τ = ν∗(λ
∗τ . ρ ∗β). Therefore

G(α, n + 1) . (q1(β) . τ )− q1(β) . (G(α, n) . τ )

= ν∗
(
λ ∗τ . ν ∗G(α, n + 1) . ρ ∗β

)
− ν∗

(
λ ∗(τ .G(α, n)) . ρ ∗β

)
= ν∗

(
ch(F) . λ ∗τ . ρ ∗(αβ)

)
by Proposition 5.2

=
∑
k≥0

1
k!
ν∗
(
c1(F)k λ ∗τ . ρ ∗(αβ)

)
.

On the other hand, since q1(αβ) is given on H ∗
(
X[n],Q

)
by the action by correspondence

of the Poincaré dual of ρ ∗(αβ), we have by Lemma 4.3

q(k)
1 (αβ) =

[(
PD (ρ ∗(αβ))

)
∗
](k)

=
[(

PD (ρ ∗(αβ)) ∩ c1(F)
)
∗
](k−1)

= · · · =
[
PD (ρ ∗(αβ)) ∩ c1(F)k]

∗

This yields the result.

As explained in [26, Rem. 4.5], Proposition 5.5, Theorem 4.7 and Corollary 4.4 yield a
complete description of the operators Sk(α).

The forthcoming theorems 5.6, 5.7 and 5.9 extend to Hilbert schemes of symplectic
manifolds the analogous results for projective surfaces of [30, Th. 5.2], [31, Th. 4.1]
and, for Theorem 5.9, of [28, Th. 1.1] and [38, Th. 5.13]. The first two results are
formal consequences of the various relations between qn(α), d, Ln(α) and Si(α) listed
in [31, Th. 2.1]. Thus, the two following theorems are formal consequences of Theorem
4.7, Corollary 4.9 and Proposition 5.5:

Theorem 5.6 If 0 ≤ i < n and if α runs through a fixed basis of H∗(X,Q), the classes
Gi(α, n) generate the ring H∗

(
X[n],Q

)
.

Theorem 5.7 For every integer n, the ring H ∗
(
X[n],Q

)
can be built by universal

formulae from the ring H ∗(X,Q) and the first Chern class of X in H2(X,Q).

In the case where b1(X) vanishes, Theorem 5.6 implies that the rings H∗
(
X[n],Q

)
are

generated by the components of the tautological Chern characters ch(E [n]), where E
runs through all complex vector bundles on X .
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We now turn to the study of a particular case of Ruan’s crepant resolution conjecture.
Orbifold cohomology provides a geometrical approach to the rings H∗

(
X[n],Q

)
. If

J is an adapted almost-complex structure on X , the symmetric product X(n) is an
almost-complex Gorenstein orbifold. The orbifold cohomology ring H ∗orb

(
X(n),Q

)
is

Z–graded and depends only on the deformation class of J (see [10], [1], [16]).

After works by Lehn–Sorger [27], [28], Li–Qin–Wang [29], [30], [31], Fantechi–
Göttsche [16] and Uribe [43], Qin and Wang [38, § 2.6] developed a set of axioms that
characterize H ∗orb

(
X(n),Q

)
as a ring. Here is their result, as stated in [1, Th. 5.24]:

Theorem 5.8 Let A be a graded unitary ring, (X, J) be an almost-complex compact
four-manifold and H

(
H∗(X,C)

)
be the Heisenberg super-algebra of H ∗(X,C). We

assume that:

(i) The ring A is an irreducible H
(
H∗(X,C)

)
–module and 1 is a highest weight

vector.

(ii) For any α in H∗(X,C) and for any nonnegative integer i, there exist classes
Oi(α, n) in A|α|+2i such that if Di(α) is the left multiplication by

⊕
n

Oi(α, n) on
A and if d = D1(1), then
– For all α , β in H∗(X,C), for every nonnegative integer k ,[

Dk(α), q1(β)
]

= q(k)
1 (αβ).

– If δX is the class in H ∗(X,C)⊗3 mapped by the Künneth isomorphism to the
cycle class of the diagonal in X3 , then

∑
l1+l2+l3=0

: ql1
ql2

ql3
: (δX) = −6 d.

Then the rings A and H ∗orb

(
X(n),C

)
are isomorphic.

(We use the physicists’ normal ordering convention

: ql1
ql2

ql3
: = qm1

qm2
qm3

, where {l1, l2, l3} = {m1,m2,m3} and m1 ≤ m2 ≤ m3).

We apply this theorem to prove Ruan’s conjecture for the symmetric products of a
symplectic four-manifold with torsion first Chern class.

Theorem 5.9 Let (X, ω) be a symplectic compact four-manifold with vanishing first
Chern class in H2(X,Q). Then, for every positive integer n, Ruan’s crepant conjecture
holds for X(n) , ie the rings H∗

(
X[n],C

)
and H ∗orb

(
X(n),C

)
are isomorphic.

Proof Let Ok(α, n) = k!Sk(α, n). The first condition of Theorem 5.8 (ii) is exactly
Proposition 5.5. The second condition is a formal consequence of the Nakajima relations
and of the formulae

[
q′n(α), qm(β)

]
= −nm qn+m(αβ), q′n(α) = nLn(α).



54 Julien Grivaux

6 The cobordism class of X[n]

In this section, (X, J) is an almost-complex compact four-manifold, and no symplectic
hypotheses are required. The almost-complex Hilbert schemes X[n] are endowed with a
stable almost complex structure, hence define almost-complex cobordism classes. By
classical results of Novikov [37] and Milnor [34], the almost-complex cobordism class

of X[n] is completely determined by the Chern numbers
∫

X[n]
P
[
c1(X[n]), . . . , c2n(X[n])

]
,

where P runs through all polynomials P in Q
[
T1, . . . ,T2n

]
of weighted degree 4n,

each variable Tk having degree 2k . We intend to prove the following result:

Theorem 6.1 The almost-complex cobordism class of X[n] depends only on the
almost-complex cobordism class of X .

This means that if P is a weighted polynomial in Q
[
T1, . . . ,T2n

]
of degree 4n, there

exists a weighted polynomial P̃
[
T1, T2

]
of degree 4, depending only on P and n, such

that ∫
X[n]

P
[
c1(X[n]), . . . , c2n(X[n])

]
=

∫
X

P̃
[
c1(X), c2(X)

]
.

This result has been proved by Ellinsgrud, Göttsche and Lehn [15, Th. 0.1] when X
is projective. In § 6.1, 6.2 and 6.3, we adapt the authors’ original proof in a relative
setting. Throughout this section, we use extensively the notations of § 3.5, especially
Notations 3.24.

6.1 Computation of TX[n] in K–theory

Let J rel
n×1 (resp. J rel

n , resp. J rel
n+1 ) be a relative integrable complex structure in a

neighbourhood W (resp. W ′ , resp. W ′′ ) of Zn×1 (resp. Zn , resp. Zn+1 ). We denote the
class of T relW[n]

rel (resp. T relW [n+1]
rel , resp. T relW ′[n]

rel , resp. T relW ′′[n+1]
rel ) in K rel(W [n]

rel

)
(resp. K rel(W[n+1]

rel

)
, resp K rel(W ′[n]

rel

)
, resp. K rel(W ′′[n+1]

rel

)
) by κ̃n (resp. κ̃n+1 , resp.

κn , resp. κn+1 ).

Lemma 6.2 The restriction to X[n] (resp. X[n+1] ) of the topological class of κn (resp.
κn+1 ) is the class of the complex vector bundle TX[n] (resp. TX[n+1] ) in K(X[n]) (resp.
K(X[n+1])) given by the stable almost-complex structure on X[n] (resp. X[n+1] ).
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Proof If J rel
n satisfies the conditions (C) listed in [44, p. 711], then X[n]

J rel
n

is smooth.

Besides, the construction of the stable almost-complex structure of X[n]
J rel

n
performed in

[44] shows that TX[n] and T relW [n]
rel |X[n] have the same class in K(X[n]). Since relative

almost-complex structures satisfying the conditions (C) can be chosen arbitrary close
to J in C 0–norm, Proposition 2.13 implies, after shrinking W if necessary, that J rel

n
can be joined by a smooth path {J rel

n, t}t∈[0,1] to another relative integrable structure
satisfying the conditions (C). By rigidity of the topological K–theory, the class of
T rel[W[n]

rel, J
rel
n, t
]
|X[n] in K

(
X[n]) is independent of t . The result follows.

Remark 6.3 For an arbitrary J rel
n , by Theorem 2.18 (ii), X[n]

J rel
n

is only a topological
manifold. Therefore, the advantage of using T relW [n]

rel is that this complex vector bundle
is defined for any relative integrable complex structure J rel

n .

Proposition 6.4 The following identities hold in K rel(W[n]
rel

)
and K rel(W[n+1]

rel

)
res-

pectively:

κ̃n = p∗
(
Õn + Õ∨n − Õn . Õ∨n

)
, κ̃n+1 = q∗

(
Õn+1 + Õ∨n+1 − Õn+1 . Õ∨n+1

)
.

Proof Let φ : U ∼ //Z × V be a relative holomorphic chart on W ′ , p be the first
projection from Z[n] × Z to Z[n] and Yn be the incidence locus in Z[n] × Z defined by
(2–1). Since p is finite on Ỹn , we obtain by Proposition 3.13:

p∗HomO rel

(
J̃n, Õn

)
|U ' φ

−1[pr−1
1

[
p∗HomOZ[n]×Z

(
JYn

,OYn

)]
⊗ pr−1

1 OZ[n]×Z
O rel

Z[n]×Z×V

]
' φ−1[pr−1

1 TZ[n] ⊗ pr−1
1 OZ[n]×Z

O rel
Z[n]×Z×V

]
'
(
T rel W[n]

rel

)
|U.

These local isomorphisms patch together into a global isomorphism between the two
relative holomorphic bundles p∗ HomO rel

(
J̃n, Õn

)
and TW [n]

rel . If i is a nonnegative
integer, Proposition 3.6 yields the isomorphism

Ext i
O rel

(
Õn,O

rel)
|U ' φ

−1(pr−1
1 Ext i

OZ[n]×Z
(OYn

,OZ[n]×Z)⊗ pr−1
1 OZ[n]×Z

O rel
Z[n]×Z×V

)
.

Since Yn has codimension 2 in Z[n] × Z , Ext i
O rel

(
Õn,O

rel) = 0 for i < 2 by [14,

Prop. 18.4 and Th. 18.7]. Besides, J̃n locally admits a free resolution of length 2.
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Using Proposition 3.16 (i), we get the following equalities in K rel
Ỹn

(
W [n]

rel ×X(n)×X
W
)

:

J̃ ∨n . Õn = HomO rel

(
J̃n, Õn

)
− Ext 1

O rel

(
J̃n, Õn

)
+ Ext 2

O rel

(
J̃n, Õn

)
= HomO rel

(
J̃n, Õn

)
− Ext 2

O rel

(
Õn, Õn

)
= HomO rel

(
J̃n, Õn

)
− Ext 2

O rel

(
Õn,O

rel)
= HomO rel

(
J̃n, Õn

)
− Õ∨n

so that p∗Hom
O rel

(
J̃n, Õn

)
= p∗

[(
O rel − Õ∨n

)
. Õn + Õ∨n

]
. The proof of the second

identity is exactly the same.

6.2 Comparison of TX[n] and TX[n+1] via the incidence variety X[n+1, n]

We use the notations of the previous section. The relative canonical bundle of W is
denoted by K rel

W .

Proposition 6.5 The following identity holds in K rel(W [n+1, n]
rel

)
:

ψ !κ̃n+1 = φ !κ̃n + L+ L∨. ρ !K rel∨
W − ρ !(O rel

W − T relW + K rel∨
W

)
−L . σ !Õ∨n − L∨. ρ !K rel∨

W . σ !Õn.

Proof By Proposition 6.4, ψ !κ̃n+1 = ψ !p̃∗
(
Õn+1 + Õ∨n+1 − Õn+1 . Õ∨n+1

)
. Let us

consider the cartesian diagrams

W [n+1, n]
rel ×

X(n)×X
W

ψW //

p̃
��

W [n+1]
rel ×

X(n)×X
W

q

��
W [n+1, n]

rel
ψ // W [n+1]

rel

and

W [n+1, n]
rel ×

X(n)×X
W

φW //

p̃
��

W[n]
rel ×X(n)×X

W

p

��
W [n+1, n]

rel
φ // W [n]

rel
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Since p (resp. q) is finite on Ỹn (resp. Ỹn+1 ), Proposition 6.4 and Proposition 3.16
(iv) yield

ψ !κ̃n+1 = p̃∗ψ
!
W
(
Õn+1 + Õ∨n+1 − Õn+1 . Õ∨n+1

)
and

φ !κ̃n = p̃∗φ
!
W
(
Õn + Õ∨n − Õn . Õ∨n

)
.

Thus, we obtain by Proposition 3.25 and Proposition 3.16 (ii):

ψ !κ̃n+1 = φ !κ̃n + p̃∗
[
p̃ !L . ρ !

W O∆ + p̃ !L∨. ρ !
W O∨∆ − p̃ !(L .L∨) . ρ !

W
(
O∆.O∨∆

)
− p̃ !L . ρ !

WO∆ . φ
!
W Õ∨n − p̃ !L∨. ρ !

W O∨∆ . φ !
W Õn

]
.

Note that L .L∨ = O rel
W[n+1, n]

rel
. Let π : W ×X(n)×X W // W be the first projection.

Since π is injective on ∆ rel , the diagram

W [n+1, n]
rel ×

X(n)×X
W

ρW //

p̃
��

W ×
X(n)×X

W

π

��
W [n+1, n]

rel
ρ // W

and Propositions 3.16 (iv) and 3.25 (ii) give

ψ !κ̃n+1 = φ !κ̃n + L . ρ ! π∗O∆ + L∨. ρ ! π∗O∨∆ − ρ ! π∗
(
O∆ .O∨∆

)
− p̃∗

(
j∗L . φ !

W Õ∨n
)
− L∨. p̃∗

[
ρ !

W O ∨∆ . φ !
W Õn

]
.

Now π∗O∆ = O rel
W , π∗O∨∆ = K rel∨

W , O∆ .O∨∆ = O rel
W − T rel

W + K rel∨
W and if

δ : W // W ×
X(n)×X

W is the diagonal injection, ρ !
W O∨∆ = ρ !

W δ∗ K rel∨
W = j∗ρ

! K rel∨
W

thanks to Proposition 3.16 (v) and to the diagram

W [n+1, n]
rel

j //

ρ

��

W [n+1, n]
rel ×

X(n)×X
W

ρW
��

W δ // W ×
X(n)×X

W

By Proposition 3.16 (ii) and (iii), we get:

ψ !κ̃n+1 = φ !κ̃n + L+ L∨ . ρ ! K rel∨
W − ρ !(O rel

W − T rel
W + K rel∨

W

)
− (p̃ ◦ j)∗

[
L .
(
φW ◦ j

) ! Õ∨n
]
− L∨. (p̃ ◦ j)∗

(
φW ◦ j

) ! Õn.

Since p̃ ◦ j = id and φW ◦ j = σ , we obtain the result.
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6.3 Cohomological computations

Lemma 6.6 If i is a positive integer, the following identities hold in H2i
(
X[n+1, n],Q

)
:

(i) ci
(
φ !κ̃n

)
|X[n+1, n] = λ ∗ci

(
X[n]) and ci

(
ψ !κ̃n+1

)
|X[n+1, n] = ν ∗ci

(
X[n+1]).

(ii) ci
[(
σ ! Õn

)∞]
|X[n+1, n] = σ ∗µi, n .

(iii) ci
(
ρ ∗ T relW

)
|X[n+1, n] = ρ ∗ci(X).

Proof (i) By the homotopy invariance of topological K–theory, the cohomology class
ci
(
φ !κ̃n

)
|X[n+1, n] in H2i

(
X[n+1, n],Q

)
is independent of J rel

n×1 . Thus, we can assume that
W and W ′ satisfy the compatibility condition (A) of § 2.4. It follows from Lemma 6.2
that ci

(
φ !κ̃n

)
|X[n+1, n] =λ ∗ci

(
κn

)
|X[n] =λ ∗ci

(
X[n]). Using the compatibility condition

(B) instead of (A) we obtain the second identity.

(ii) By Proposition 3.20,
[(
σ !Õn

)∞] = σ ∗
[
Õn
∞]. This gives the result.

(iii) Let W = W ×X(n) X , where the base change morphism is given by the diagonal

injection of X in X(n) . We consider the diagram:

W[n+1, n]
rel

ρ // W W? _oo

X[n+1, n]
?�

OO

ρ
// X
?�

OO

X
?�

OO

Then, ci
(
ρ ∗ T relW

)
|X[n+1, n] = ρ ∗ci

(
T rel W

)
|X . Since W is a neighbourhood of ∆X in

X × X , T rel W |X ' TX , so that ci
(
T relW

)
|X = ci(X).

For any nonnegative integer k , let dk be the k–th Chern class of
[
C∞∆X

]
in H2k(X×X,Q).

If i : X // X × X is the diagonal injection, the differentiable Grothendieck–Riemann–
Roch theorem for immersions of [4, Th. 3.3] gives d0 = 1, d1 = 0, d2 = −i∗(1),
d3 = −i∗ [c1(X)] and dk = 0 for k ≥ 4. Thus i ∗d0 = 1, i ∗d1 = 0, i ∗d2 = −c2(X),
i ∗d3 = −c1(X) c2(X) and i ∗dk = 0 for k ≥ 4.

Proposition 6.7 Let i be a positive integer. Then

(i) (ν, id) ∗µi, n+1 − (λ, id) ∗µi, n =
i∑

k=0

pr ∗1 l k . (ρ, id) ∗ di−k .

(ii) ν ∗ci
(
X[n+1])− λ ∗ci

(
X[n]) is a universal polynomial in the classes l, ρ ∗cj(X) and

σ ∗µj, n .
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Proof (i) Let Zn×1×1 be the incidence locus in X ×
(
X(n) × X × X

)
defined by

Zn×1×1 = {(p; x, q, r) in X ×
(
X(n) × X × X

)
such that p ∈ x ∪ q ∪ r}

and let J rel
n×1×1 be a relative integrable complex structure in a neighbourhood Ŵ of

Zn×1×1 . We can assume that
(
W, J rel

n×1

)
and

(
Ŵ, J rel

n×1×1

)
satisfy as relative analytic

spaces the compatibility condition W ×X(n)×X
(
X(n) × X × X

)
⊆ Ŵ , the base change

map being given by the diagonal injection of X into X × X .

Exactly as in § 3.5, we can construct relative incidence sheaves Ôn and Ôn+1 on Ŵ [n]
rel

and Ŵ [n+1]
rel as well as a relative exceptional divisor D̂rel in Ŵ [n+1, n]

rel . Let φ̂
Ŵ

, ψ̂
Ŵ

,

ρ̂
Ŵ

, ĵ, p̂, L̂, ∆̂rel and O
∆̂

be the analogs of φW , ψW , ρW , j, p̃, L, ∆rel and O∆ . In
this context, Proposition 3.25 takes the following form:

– There is a natural exact sequence on Ŵ [n+1, n]
rel ×X(n)×X×X Ŵ relating Ôn and Ôn+1 ,

namely:
0 // ĵ∗L̂ // ψ̂ ∗

Ŵ
Ôn+1

// φ̂ ∗
Ŵ
Ôn

// 0.

– ĵ∗L̂ = p̂ ∗L̂ ⊗ ρ̂ ∗
Ŵ
O

∆̂
.

– ρ̂ ∗
Ŵ
O

∆̂
= ρ̂ !

Ŵ
O

∆̂
, ψ̂ ∗

Ŵ
Ôn+1 = ψ̂ !

Ŵ
Ôn+1 and φ̂ ∗

Ŵ
Ôn = φ̂ !

Ŵ
Ôn .

Arguing as in Lemma 6.3 and using Proposition 3.20, we get c1
(
p̂ ∗L̂

)
|X[n+1, n]×X = pr ∗1 l

and for any nonnegative integer k ,

– ck

[(
ρ̂ ∗

Ŵ
O

∆̂

)∞]
|X[n+1, n]×X = (ρ, id) ∗dk ,

– ck

[(
ψ̂ ∗

Ŵ
Ôn+1

)∞]
|X[n+1, n]×X = (ν, id) ∗µk, n+1 ,

– ck

[(
φ̂ ∗

Ŵ
Ôn

)∞]
|X[n+1, n]×X = (λ, id) ∗µk, n .

This yields the result.

(ii) This is a straightforward consequence of Proposition 6.5 and Lemma 6.6.

We are now going to perform in our context the induction step of [15]. For any subset I
of {0, . . . ,m}, we denote by prI the projection from X[n+1] × Xm to the product of the
factors indexed by I .

Proposition 6.8 If m is a positive integer, let P be a polynomial in the cohomology
classes pr ∗0 ci

(
X[n+1]), pr ∗0k µi, n+1 , pr ∗kl di , pr ∗k ci(X) (1 ≤ k, l ≤ m) on X[n+1] × Xm.

Then there exists a polynomial P̃ depending only on P, in the analogous classes on

X[n] × Xm+1 , such that
∫

X[n+1]×Xm
P =

∫
X[n]×Xm+1

P̃.
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Proof We consider the incidence diagram

(ν, id)

��

X[n+1, n] × Xm

(σ, id)

  
X[n+1] × Xm

(
X[n] × X

)
× Xm

Since (ν, id) and (σ, id) are generically finite of degrees n + 1 and 1 respectively,∫
X[n+1]×Xm

P =
1

n + 1

∫
X[n]×Xm+1

(σ, id)∗
[
(ν, id) ∗P

]
.

Let i be a positive integer. The class (ν, id) ∗ pr ∗0 ci
(
X[n+1]) − (σ, id) ∗ pr ∗0 ci

(
X[n])

is, by Proposition 6.7 (ii), a polynomial in the classes pr ∗0 l, (σ, id) ∗ pr ∗1 cj(X) and
(σ, id) ∗ pr ∗01 µj, n ; and Proposition 3.27 gives (σ, id)∗ pr ∗0 l j = (−1)j pr ∗01 µj, n . Thus,
(σ, id)∗(ν, id) ∗ pr ∗0 ci

(
X[n+1])−pr ∗0 ci

(
X[n]) is a polynomial in the classes pr ∗01 µj, n and

pr ∗1 cj(X).

By Proposition 6.7 (i), (ν, id) ∗ pr ∗0k µi, n+1 − (σ, id) ∗ pr ∗0,k+1 µi, n is a polynomial in the
classes pr ∗0 l and (σ, id) ∗ pr ∗1, k+1 dj . Applying proposition 3.27 again, we obtain that
(σ, id)∗(ν, id) ∗ pr ∗0k µi, n+1 − pr ∗0,k+1 µi, n is a polynomial in the classes pr ∗01 µj, n and
pr ∗1k dj .

To conclude, we use the relations

(ν, id) ∗ pr ∗kl di = (σ, id) ∗ pr ∗k+1, l+1 di

and (ν, id) ∗ pr ∗k ci(X) = (σ, id) ∗ pr ∗k+1 ci(X).

We can now finish the proof of Theorem 6.1. We write∫
X[n]

P
(

c1
(
X[n]), . . . , c2n

(
X[n])) =

∫
X[n−1]×X

P̃1 =

∫
X[n−2]×X2

P̃2 = · · · =
∫

Xn
P̃

where P̃ is a universal polynomial in the classes pr ∗k ci(X) and pr ∗kl di . By the explicit
expression of the classes di , we obtain that

∫
Xn P̃ is a universal polynomial in the Chern

numbers c1(X)2 and c2(X).

7 Appendix: existence of relative integrable complex struc-
tures

This appendix is devoted to the proof of Proposition 2.13. This proof is carried out in
several steps. We introduce at first some notations and terminology:
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– If Y and A are two subsets of X × B and B respectively, we put Y |A = Y ∩ (X × A).

– If Y is a subset of X×B, we say that Y is adapted to Z if Y contains pr−1
2 [pr2(Y)∩Z].

– If W and W ′ are open subsets of X × B, we write W . W ′ if W ∩W ′ is nonempty
and if W | pr2(W)∩ pr2(W′) is included in W ′| pr2(W)∩ pr2(W′) .

Then we have:

Lemma 7.1 Let K be a compact subset of B. Then for any neighbourhood W of Z |K
in X × B, there exists a neighbourhood U of K in B such that W |U is adapted to Z .

Proof Let π : Z // B be the restriction of the first projection to Z . Since π is finite,
π is closed. Thus, if U = B \ π

[(
(X × B) \W

)
∩ Z
]
, U is an open neighbourhood of

K in B, and W |U is adapted to Z .

We are now going to study in detail some very special open subsets of X × B, which
are essentially tubular neighbourhoods of Z . The construction of these open sets relies
on the (probably well-known) lemma:

Lemma 7.2 Let Y be a differentiable orbifold endowed with its natural stratification,
S be a stratum of T and K be a compact subset of Y . Then there exist a neighbourhood
U of K in Y and a smooth retraction R : U // U ∩ S.

Proof We start by a local construction. Let x be a point in S and Ux be a neighbourhood
of x in Y such that Ux is isomorphic as an orbifold to V/G, where V is an open subset
of Rn and G is a finite group of diffeomorphisms of V . Let π : V // Ux be the
quotient map and y be an element of π−1(x). We can assume that G is equal to the
stabilizer Gy of y. In this case, π−1(S ∩ Ux) is exactly the subset of the points of V
fixed by all the elements of G; we denote it by VG .

Let us construct an embedding of Ux into an Euclidean space. By Bochner’s linearization
theorem, we can assume that the finite group G acts linearly on V . This means that the
action of G is induced by a linear representation of G in GL(n,R) if we choose y as the
origin of Rn . Then G also acts on the algebra R[X1, . . . ,Xn] of polynomial functions
on Rn and the algebra R[X1, . . . ,Xn]G of G–invariant polynomials is finitely generated
[41, Appendix 4, Prop. 1]. Let φ1, . . . φd be a set of generators and φ = (φ1, . . . φd).
The map φ : Rn // Rd induces a smooth map φ̃ from Rn/G to Rd which is easily
checked to be injective. Since Ux is open in Rn/G, φ̃ gives an embedding of Ux in Rd .
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Let us now prove that the restriction of φ̃ to S ∩ Ux is an immersion. Since
π |VG : VG // S ∩ Ux is a diffeomorphism, this is equivalent to show that the re-
striction of φ to VG is an immersion. Let p be a point in VG , h be a tangent vector in
TpVG , and assume that φ∗(h) = 0. If we put ψi = φi − φi(p) for 1 ≤ i ≤ d , then every
G–invariant polynomial P on Rn can be decomposed as P1ψ1 + · · ·+ Pdψd + P(p),
where the Pi ’s are G–invariant. This proves that P∗(h) = 0. Let A be the algebra of
polynomial functions on the vector space (Rn)G . Then A is a quotient of R[X1, . . . ,Xn]
and G acts trivially on A, so that A is a quotient of R[X1, . . . ,Xn]G . Let us choose
a linear form u on (Rn)G such that, via the identification between TpVG and (Rn)G ,
u(h) is nonzero. If ũ is a lift of u in R[X1, . . . ,Xn]G , then ũ∗(h) is nonzero, which is a
contradiction.

We can now argue as in the proof of the Whitney embedding theorem in the compact
case: using a partition of unity, we obtain an embedding Γ of a neighbourhood
U of K into some Euclidean space RN such that Γ |U∩S is an immersion. Since
Γ(U ∩ S) is a submanifold of RN , after shrinking U if necessary, we can consider
a tubular neighbourhood Ω of Γ(U ∩ S) in RN such that Γ(U) is included in Ω. If
R̃ : Ω // Γ(U ∩ S) is the retraction associated with this tubular neighbourhood, we
define R : U // U ∩ S by composing R̃ ◦ Γ with the inverse of the diffeomorphism
Γ |U∩S : U ∩ S ∼ //Γ(U ∩ S) .

Let r be the injectivity radius of X . Since X is compact, r is positive. For any x in
X and ε satisfying 0 < ε < r , the exponential map expg(x) at x associated with the
Riemannian metric g is a diffeomorphism between the Euclidean ball of TxX of radius
ε centered at the origin and the geodesic ball Bg(x, ε). The former being endowed with
the integrable complex structure Jx , we get a canonical integrable complex structure on
the latter.

Let us fix a stratum Bλ of B and a compact subset Kλ of Bλ . We denote by d(λ) the
number of sheets of the covering map pr2 |Zλ : Zλ // Bλ. If η is a sufficiently small
number in ]0, r[, there exists a small neighbourhood Vλ of Kλ in Bλ such that for any b
in Vλ , if Z |b = {x1, . . . , xd(λ)}, then the geodesic balls

(
Bg(xi, η)

)
1≤i≤d(λ)

are pairwise

disjoint in X . By Lemma 7.2, we can assume that there exist a neighbourhood Uλ of
Kλ in B such that Uλ ∩ Bλ = Vλ and a smooth retraction R : Uλ

// Vλ. Then we
put Ω =

∐
b∈Vλ

∐
x∈Z |Rλ(b)

Bg(x, η). Since Ω is a neighbourhood of Z |Kλ , Lemma 7.1

shows that Ω is adapted to Z if Uλ is a sufficiently small neighbourhood of Kλ . We
call such an open set Ω an η–neighbourhood of Z above Kλ . It is easy to prove that if
W is any neighbourhood of Z |Kλ , then there exists an η–neighbourhood of Z above Kλ
contained in W if η is a sufficiently small positive real number.
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We now explain how to cover Z in a compatible way by a finite number of η–
neighbourhoods.

Lemma 7.3 Let W be an open subset of X × B adapted to Z , Bλ be a stratum of B
such that ∂Bλ is contained in pr2(W) and η0 be a positive real number. Then, for every
relatively compact open subset V of pr2(W) containing ∂Bλ , there exist a compact
subset Kλ of Bλ , a positive real number η smaller than η0 and a η–neighbourhood Ω

of Z above Kλ such that Bλ ⊆ V ∪ Kλ and Ω . W |V .

Proof Let U be a relatively compact neighbourhood of ∂Bλ in Bλ ∩ V and put
Kλ = Bλ \ U . Then Kλ is compact in Bλ and Bλ ⊆ V ∩ Kλ . If K′ = (V ∩ Bλ) \ U ,
then K′ is a compact subset of Bλ included in Kλ and W is a neighbourhood of Z |K′ .
Thus, for η small enough, there exists an η–neighbourhood Ω′ of Z above K′ contained
in W . We can even assume that Ω′ = Ω |O , where Ω is an η–neighbourhood of Z above
Kλ and O is a small neighbourhood of K′ in B. Since Ω |O ⊆ W , Ω |O∩V ⊆ W |O∩V ,
so that Ω . W |V .

Then we get:

Lemma 7.4 For every positive real number η0 , we can construct a finite covering(
Wi
)

1≤i≤N of Z by open subsets of X × B such that:

– For each i, there exists ηi in ]0, η0] such that Wi is a disjoint finite union of ηi –
neighbourhoods of Z above compact subsets of the strata of B.
– For every i such that 2 ≤ i ≤ N , Wi . Wi−1 ∪ · · · ∪W1 .
– The integer N is smaller than the number of strata of B.

Proof Let Λ be the finite set of strata of B and
(
Λi
)

1≤i≤N be the partition of Λ defined
as follows: Λ1 is the set of elements of Λ corresponding to closed (ie minimal) strata
in B, and the other Λi ’s are defined inductively for i ≥ 2 by the expression

Λi = {λ in Λ \ (Λ1 ∪ · · · ∪ Λi−1) such that ∂Bλ ⊆
i−1⋃
j=1

⋃
µ∈Λj

Bµ}·

For 1 ≤ i ≤ N , we put Si =
⋃ i

j=1
⋃
λ∈Λj

Bλ . The Si ’s are closed subsets of B. Let
Λ1 = {λ1, . . . , λk}. For η1 sufficiently small, we can pick pairwise η1 –neighbourhoods
of Z above the Bλi

’ s (1 ≤ i ≤ k). We denote their union by W1 . Then pr2(W1) is a
neighbourhood of S1 in B. Let V be a relatively compact neighbourhood of S1 in
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pr2(W1). If Λ2 = {µ1, . . . , µl}, we can find by Lemma 7.3 some compact subsets
K1, . . . ,Kl of Bµ1

, . . . ,Bµl
and η2 –neighbourhoods Ω1, . . . ,Ωl of Z above K1, . . . ,Kl

(where 0 ≤ η2 ≤ η1 ) such that for 1 ≤ i ≤ l, Bµi ⊆ V ∪ Ki and Ωi . W1 |V . If η2 is
small enough, we can assume that the Ωi ’s are pairwise disjoint. If we replace W1 by
W1 |V and if we put W2 =

∐ l
i=1 Ωi , then pr2(W1) is still a neighbourhood of S1 in B

and pr2(W1 ∪W2) is a neighbourhood of S2 in B. Besides, W2 . W1 . To construct
W3 , we add the strata in Λ3 and so on.

We now turn to the construction of relative integrable complex structures. If we
take a covering

(
Wi
)

1≤i≤N of Z given by Lemma 7.4, each Wi (more generally each
η–neighbourhood of Z above a compact subset of a stratum of B) is endowed with
a canonical relative integrable complex structure, but these various structures do not
match on the intersections Wi ∩Wj . This is why it is necessary to use a gluing argument.
We start by some preliminaries.

Let E be any finite-dimensional real vector space of even dimension 2k . If J (E)
is the set of complex structures on E , J (E) is a homogeneous space isomorphic to
GL(2k,R)/GL(k,C), so it is a submanifold of End(E). We define a subset J of the
vector bundle End(TX) by J =

∐
x∈X J (TxX). Then J is a differentiable manifold

and the projection p : J // X is a smooth fibration. Besides, the almost-complex
structure J of X is a smooth section of this fibration. For ε > 0 and x in X ,
we put J (TxX) = {M in J (TxX) such that ||M − J(x)||g < ε} and we define
Jε =

∐
x∈X Jε(TxX). For any ε > 0, Jε is a neighbourhood of the image of J in J.

Furthermore, since X is compact, there exists ε0 > 0 such that for every ε smaller than
ε0 , Jε is a smooth fibration whose fiber is diffeomorphic to an Euclidean ball.

Let η be a positive real number strictly smaller than r . For x in X and t in [0, 1], we
define ut : Bg(x, η) // Bg(x, tη) by ut(x)(p) = expg(x)

[
t expg(x)−1(p)

]
. For any y in

Bg(x, η), there is a canonical isomorphism φt(x, y) between TyX and Tut(x)(y)X obtained
via the differential of expg(x) from the canonical isomorphism between Texpg(x)−1(y)(TxX)
and Tt expg(x)−1(y)(TxX). Since X is compact, there is a positive constant Aη depending
only on η such that limη→0 Aη = 1, and for every x in X , every y in Bg(x, η) and every
t in [0, 1], ||φt(x, y)||g ≤ Aη and ||φt(x, y)−1||g ≤ Aη . If x is in X and t in [0, 1], let J̃
be an almost-complex structure on Bg(x, tη); if t = 0, we take the convention that J̃ is
a complex structure on TxX . Then we can define a rescaled almost-complex structure
Rt(J̃) on Bg(x, η) by the formula

∀y ∈ Bg(x, η), ∀h ∈ TyX, Rt(J̃)(y)(h) = φt(x, y)−1[J̃(ut(x)(y)
)(
φt(x, y)(h)

)]
.
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Then, for every t in [0, 1] and every almost-complex structures J̃0 and J̃1 on Bg(x, tη),
we have

||Rt(J̃1)− Rt(J̃0)||C 0, g,Bg(x, η) ≤ A2
η ||J̃1 − J̃0||C 0, g,Bg(x, tη)·

Remark that if J̃ is an almost-complex structure on Bg(x, tη), then Rt(J̃) = ut(x) ∗J̃ if
t > 0, and Rt(J̃) = expg(x)∗

(
J̃(x)

)
if t = 0. Thus, if t > 0 and J̃ is integrable or if

t = 0, then Rt(J̃) is integrable.

We end with another estimate. For any x in X and any t in [0, 1], Rt(J)(x) = J(x).
Since X is compact, there exists a positive constant Bη depending only on η such that
limη→0 Bη = 0, and for every x in X and every t in [0, 1], ||J−Rt(J)||C 0, g,Bg(x, η) ≤ Bη .

We are ready to prove the essential gluing lemma:

Lemma 7.5 Let ε, ε′ and η be positive real numbers satisfying the conditions η < r ,
0 < ε′ < ε ≤ ε0 and ε′A4

η + Bη(A2
η + 1) < ε, and let W be a η–neighbourhood of

Z above a compact subset Kλ of a stratum Bλ of B. If J rel
0 and J rel

1 are two relative
integrable complex structures in Bg, ε′(W), then there exists a smooth family

(
J rel

s
)

0≤s≤1
of relative integrable complex structures in Bg, ε(W) joining J rel

0 and J rel
1 .

Proof Let J̃ rel
0 = R0

(
J rel

0

)
and J̃ rel

1 = R0
(
J rel

1

)
. Then the families

(
Rt(J

rel
0 )
)

0≤t≤1

and
(
Rt(J

rel
1 )
)

0≤t≤1 are two smooth families of relative integrable complex structures

on W joining J rel
0 and J rel

1 to J̃ rel
0 and J̃ rel

1 respectively. Besides, for every t in [0, 1]
and i in {0, 1},

||Rt(J
rel
i )− J||C 0, g,W ≤ ||Rt(J

rel
i )− Rt(J)||C 0, g,W + ||Rt(J)− J||C 0, g,W < A2

η ε
′ + Bη.

Let ε̃ = A2
η ε
′+ Bη , V = pr2(W)∩Bλ and Rλ : pr2(W) // V be the smooth retraction

associated with W . Since ε̃ is smaller than ε0 , Jε̃ ×X Z |V is a smooth fibration over
Z |V whose fiber is diffeomorphic to an Euclidean ball (hence contractible).

The relative integrable complex structures J̃ rel
0 and J̃ rel

1 define two sections J′0 and J′1
of the fibration Jε̃ ×X Z |V ; they are given for (x, v) in Z |V by J′i(x, v) = J̃ rel

i, v (x). Then

we can find a smooth family
(
J′t
)

0≤t≤1 of sections of Jε̃ ×X Z |V joining J′0 and J′1 .

Each J′t defines a relative integrable complex structure J′t
rel on W as follows: for b in

pr2(W), let v = Rλ(b) and Z |v = {x1, . . . , xd}. Then Wb =
∐ d

i=1 Bg(xi, η) and J′t
rel is

equal to R0
(
J′t (xi, v)

)
on Bg(xi, η). Note that J̃ rel

i = J′i
rel for i = 0, 1. Besides,

||J′t
rel − J||C 0, g,W ≤ ||J

′
t

rel − R0(J)||C 0, g,W + ||R0(J)− J||C 0, g,W < A2
η ε̃+ Bη < ε.



66 Julien Grivaux

Thus we have found a piecewise smooth family of relative integrable complex structures
in Bg, ε(W) joining J rel

0 and J rel
1 . This family can be made smooth by reparametrization.

We can now finish the proof of Proposition 2.13. Fix ε and ε′ which satisfy the
conditions 0 < ε′ < ε ≤ ε0 . If d is the number of strata of B and η is a positive
real number, we define a sequence

(
εi
)

1≤i≤d by ε1 = ε′ and, for 1 ≤ i ≤ d − 1,
εi+1 = A4

η εi + Bη(A2
η + 1). Then we can find η0 > 0 such that for every η smaller

than η0 , the εi ’s are strictly smaller than ε for 1 ≤ i ≤ d and Bη is strictly smaller than

ε′ . We pick such an η0 and take a covering
(
Wi
)

1≤i≤N of Z satisfying the conditions
of Lemma 7.3. Each open subset Wi is endowed with a relative integrable complex
structure J rel

i such that ||J rel
i − J||C 0, g,Wi

< ε′ .

Since W2 . W1 , W1 ∩W2 is a finite disjoint union of η2 –neighbourhoods of Z (where
η2 ≤ η0 ) above compact subsets of the strata of B. The relative integrable complex
structures J rel

1 and J rel
2 being in Bg, ε1

(W1 ∩W2), there exists by Lemma 7.5 a smooth

family
(
J rel

t
)

1≤t≤2 in Bg, ε2
(W1 ∩W2) joining J rel

1 and J rel
2 .

Let V be a relatively compact open subset of pr2(W1). If V is large enough, the
open sets

(
W1|V ,W2, . . . ,WN

)
still satisfy the conditions of Lemma 7.3. Let χ be a

smooth function from pr2(W1 ∪W2) to [1, 2] such that χ ≡ 1 on V and supp(χ− 2) is
relatively compact in pr2(W1). Then we define a relative integrable complex structure
J̃ rel in Bg, ε2(W1|V ∪W2) by the formula J̃ rel

b = J rel
χ(b), b for b in V ∪ pr2(W2). The same

argument can be used to glue J̃ rel and J rel
3 together, and so on. Finally, we get a relative

integrable complex structure in Bg, εN
(W), where W is a neighbourhood of Z in X × B.

Thus Bg, ε is nonempty.

We now prove the connectedness of Bg, ε for 0 < ε ≤ ε0 . Let J rel
0 and J rel

1 be two
relative integrable structures in Bg, ε(W), where W is a neighbourhood of the incidence
set Z in X × B. We put ε′ = ||J rel

0 − J rel
1 ||C 0, g,W . As we did previously, we can find

η0 > 0 such that for every positive η smaller than η0 , the εi ’s are strictly smaller than
ε for 1 ≤ i ≤ d + 1. For this η0 , we take a covering

(
Wi
)

1≤i≤N of Z satisfying the

conditions of Lemma 7.3 such that each Wi is contained in W. Then for each i, J rel
0 |Wi

and J rel
1 |Wi

are elements of Bg, ε1
(Wi), so that, by Lemma 7.5, there exists a smooth

family
(
J rel

i, t
)

0≤t≤1 in Bg, ε2
(Wi) joining J rel

0 |Wi
and J rel

1 |Wi
. Using exactly the same

methods as before, we can glue the families {
(
J rel

i, t
)

0≤t≤1}1≤i≤N together and get a
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smooth family in Bg, εN+1
(W̃) joining J rel

0 to J rel
1 , where W̃ is a neighbourhood of Z in

X × B.

The weak contractibility follows from the connectedness of Bg, ε over the bases B×S p .
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Université de Provence, Centre de Mathématiques et Informatique, UMR CNRS 6632 (LATP),
39 rue Frédéric Joliot-Curie, 13453 Marseille Cedex 13, France

jgrivaux@cmi.univ-mrs.fr

http://dx.doi.org/10.2307/2951818
http://dx.doi.org/10.1070/im1997v061n06ABEH000169
http://dx.doi.org/10.1070/im1997v061n06ABEH000169
http://projecteuclid.org/getRecord?id=euclid.cag/1117649082
http://www.numdam.org/item?id=AIF_2000__50_2_689_0
mailto:jgrivaux@cmi.univ-mrs.fr

	1 Introduction
	2 Almost-complex Hilbert schemes and relative analytic spaces
	2.1 Hilbert schemes, incidence varieties and tautological bundles
	2.2 Relative spaces and relative integrable complex structures
	2.3 Construction of the almost-complex Hilbert scheme
	2.4 Incidence varieties and Nakajima operators

	3 Coherent sheaves on relative analytic spaces
	3.1 Operations on relatively coherent sheaves
	3.2 Relative analytic subspaces and direct image
	3.3 Relative analytic K-theory
	3.4 Topological K-theory for relatively coherent sheaves
	3.5 Relative incidence sheaves

	4 The boundary operator
	4.1 Lehn's formula in the almost-complex case
	4.2 Holomorphic curves in symplectic four-manifolds
	4.3 Computation of the excess term in the symplectic case

	5 The ring structure of H*(X[n],Q)
	5.1 Geometric tautological Chern characters
	5.2 Virtual tautological Chern characters
	5.3 The ring structure and the crepant resolution conjecture

	6 The cobordism class of X[n]
	6.1 Computation of TX[n] in K-theory
	6.2 Comparison of TX[n] and TX[n+1] via the incidence variety X[n+1,n]
	6.3 Cohomological computations

	7 Appendix: existence of relative integrable complex structures
	Bibliography

