Sum rules and large deviations for spectral measures on the unit circle - Archive ouverte HAL
Article Dans Une Revue Random Matrices: Theory and Applications Année : 2017

Sum rules and large deviations for spectral measures on the unit circle

Résumé

This work is a companion paper of Gamboa, Nagel, Rouault (J. Funct. Anal. 2016). We continue to explore the connections between large deviations for random objects issued from random matrix theory and sum rules. Here, we are concerned essentially with measures on the unit circle whose support is an arc that is possibly proper. We particularly focus on two matrix models. The first one is the Gross-Witten ensemble. In the gapped regime we give a probabilistic interpretation of a Simon sum rule. The second matrix model is the Hua-Pickrell ensemble. Unlike the Gross-Witten ensemble the potential is here infinite at one point. Surprisingly, but as in the above mentioned paper, we obtain a completely new sum rule for the deviation to the equilibrium measure of the Hua-Pickrell ensemble. The extension to matrix measures is also studied.
Fichier principal
Vignette du fichier
magic_OPUC_18c.pdf (392.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01300205 , version 1 (08-04-2016)
hal-01300205 , version 2 (22-04-2016)
hal-01300205 , version 3 (10-05-2016)
hal-01300205 , version 4 (20-09-2016)
hal-01300205 , version 5 (26-01-2017)
hal-01300205 , version 6 (30-01-2017)

Identifiants

Citer

Fabrice Gamboa, Jan Nagel, Alain Rouault. Sum rules and large deviations for spectral measures on the unit circle. Random Matrices: Theory and Applications, 2017, 6 (1), ⟨10.1142/S2010326317500058⟩. ⟨hal-01300205v6⟩
889 Consultations
334 Téléchargements

Altmetric

Partager

More