A scale space for texture+depth images based on a discrete Laplacian operator - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

A scale space for texture+depth images based on a discrete Laplacian operator

Résumé

In this paper we design a smoothing filter for texture+depth images based on anisotropic diffusion. Our proposed filter enables to generate a scale space on the texture image guided by depth information , and is linear and numerically stable. We show experimentally that using scene geometry preserves the internal structure of 3D surfaces (e.g., it avoids smoothing across object boundaries). As a consequence, the result of smoothing is more independent to changes in the camera position. To illustrate the practical utility of a scale space with such properties, we integrate our filter into the SIFT key-point detector, getting a substantial improvement of the repeatability of detected keypoints under significant viewpoint position changes.
Fichier principal
Vignette du fichier
doc.pdf (3.28 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01299841 , version 1 (08-04-2016)

Identifiants

Citer

Maxim Karpushin, Giuseppe Valenzise, Frédéric Dufaux. A scale space for texture+depth images based on a discrete Laplacian operator. IEEE International Conference on Multimedia and Expo, Jun 2015, Turin, Italy. ⟨10.1109/ICME.2015.7177500⟩. ⟨hal-01299841⟩
316 Consultations
174 Téléchargements

Altmetric

Partager

More