Analysis and discretization of the volume penalized Laplace operator with Neumann boundary conditions - Archive ouverte HAL
Article Dans Une Revue Applied Numerical Mathematics: an IMACS journal Année : 2015

Analysis and discretization of the volume penalized Laplace operator with Neumann boundary conditions

Résumé

We study the properties of an approximation of the Laplace operator with Neumann boundary conditions using volume penalization. For the one-dimensional Poisson equation we compute explicitly the exact solution of the penalized equation and quantify the penalization error. Numerical simulations using finite differences allow then to assess the discretization and penalization errors. The eigenvalue problem of the penalized Laplace operator with Neumann boundary conditions is also studied. As examples in two space dimensions, we consider a Poisson equation with Neumann boundary conditions in rectangular and circular domains.
Fichier principal
Vignette du fichier
1403.5948.pdf (1.61 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01299247 , version 1 (05-04-2024)

Identifiants

Citer

Dmitry Kolomenskiy, Romain Nguyen van Yen, Kai Schneider. Analysis and discretization of the volume penalized Laplace operator with Neumann boundary conditions. Applied Numerical Mathematics: an IMACS journal, 2015, 95, pp.238-249. ⟨10.1016/j.apnum.2014.02.003⟩. ⟨hal-01299247⟩
425 Consultations
34 Téléchargements

Altmetric

Partager

More