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Abstract

We study the properties of an approximation of the Laplace operator with
Neumann boundary conditions using volume penalization. For the one-
dimensional Poisson equation we compute explicitly the exact solution of
the penalized equation and quantify the penalization error. Numerical sim-
ulations using finite differences allow then to assess the discretisation and
penalization errors. The eigenvalue problem of the penalized Laplace opera-
tor with Neumann boundary conditions is also studied. As examples in two
space dimensions, we consider a Poisson equation with Neumann boundary
conditions in rectangular and circular domains.

Keywords:

Volume penalization, Neumann boundary conditions, Laplace operator,
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1. Introduction

Solving partial differential equations (PDEs) in complex domains is un-
avoidable in real world applications. Different numerical methods have been
developed so far, for example body fitted computational grids or coordinate
transforms [4]. Immersed boundary methods are still of growing interest due
to their high flexibility and their ease of implementation into existing codes.
The underlying idea of these methods is to embed the complex geometry
into a simple geometry (e.g. a rectangle) for which efficient solvers are avail-
able. The boundary conditions are then imposed by adding supplementary
terms to the governing equations. Different penalization approaches are on
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the market, for example, surface and volume penalization techniques, im-
mersed boundary methods using direct forcing and Lagrangian multipliers.
For reviews on immersed boundary techniques, we refer to [13, 10].

In the current work, we focus on the volume penalization method devel-
oped by Angot et al. [1] for imposing Dirichlet boundary conditions in viscous
fluid flow. Physically, the boundary conditions correspond to no-slip condi-
tions on the wall, i.e., both the normal and the tangential velocity do vanish
at the fixed wall. This penalization approach is physically motivated as walls
or solid obstacles are modeled as porous media whose permeability tends to
zero. Mathematically, it has also been justified. In [1, 3] it was shown that
the solution of the penalized Navier–Stokes equations converges towards the
solution of the Navier–Stokes equations with no-slip boundary conditions,
while the error depends on the penalization parameter. Various applications
of the volume penalization method to impose Dirichlet boundary conditions
can be found in the literature. Briefly summarizing, we can mention com-
putations of confined hydrodynamic and magnetohydrodynamic turbulence,
which can be found in [17] and [18, 11], respectively. Fluid-structure inter-
action simulations have been carried out for moving obstacles [6] and for
flexible beams [8]. Applications to the aerodynamics of insect flight in two
and three space dimensions can be found in [7].

Most of the developed penalization techniques deal with Dirichlet bound-
ary conditions, and only few allow to impose Neumann conditions. Neumann
boundary conditions in partial differential equations are encountered in many
applications, for example when solving the Poisson equation for pressure in
incompressible flows, to model adiabatic walls in heat transfer, or to impose
no-flux conditions for passive or reactive scalars at walls. In [2] a review on
the pure Neumann problem using finite elements is given and different tech-
niques for solving the algebraic system are discussed. An extension of the
volume penalization method [1] to impose Neumann or Robin boundary con-
ditions has been presented in [14] and applied in the context of finite element
or finite volumes [15]. In [5] we extended this method for pseudo-spectral
discretizations and applied it to scalar mixing in incompressible flow for fixed
and also for moving geometries imposing no-slip conditions for the velocity
and no-flux conditions for the passive scalar field.

The fields of possible applications of the volume penalization method
for imposing Neumann conditions in complex geometries are multifarious
and large. For example, confined magnetohydrodynamic flow configurations
can be studied imposing finite values of the current density at the wall, or
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convection problems which necessitate imposing a given heat flux at the
boundary.

Motivated by the work of [9], where the properties of Fourier approxima-
tions of elliptic problems with discontinuous coefficients have been studied,
we analyzed mathematically the penalized Laplace and Stokes operators with
Dirichlet boundary conditions in [12] and verified the predicted convergence
numerically. The aim of the present work is to generalize the approach de-
veloped in [12] and to analyze the penalized Laplace operator with Neumann
boundary conditions. For a one-dimensional Poisson equation, we explicitely
compute the penalization error by solving the penalized equation analyti-
cally. Discretizing the penalized equation using finite difference methods, we
study the influences of both the numerical resolution and the value of the
penalization parameter.

The outline of the paper is the following: First we consider the penalized
Poisson equation in one space dimension with Neumann boundary conditions
both analytically and numerically. Then, in section 3 we study the eigenvalue
problem of the penalized Laplace operator. Section 4 presents applications
of the penalization method to solve the Poisson equation in two dimensions
in a rectangular and a circular domain. Finally, some conclusions are drawn
and some perspectives are given in section 5.

2. Poisson equation with Neumann boundary conditions and pe-

nalization

2.1. Problem setting

We consider the one-dimensional Poisson equation

− w′′ = f for x ∈ (0, π) (1)

completed with homogeneous Neumann boundary conditions, w′(x = 0) =
w′(x = π) = 0 and for f(x) = m2 cosmx, m ∈ Z. The exact solution
w ∈ H2(0, π) is given by w(x) = cosmx + C, where C ∈ R is an arbitrary
constant, as the solution is not unique. Integrating eq. (1) over (0, π) yields
the compatibility condition

∫ π

0
f(x)dx = w′(x = π) − w′(x = 0) = 0 which

has to be satisfied to guarantee the existence of a solution.
Following [5], the penalized Poisson equation reads

− dx((1− χ) + ηχ)dxv = f for x ∈ (0, 2π) (2)
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where η > 0 is the penalization parameter and χ the mask function defined
by

χ(x) =







0 for 0 < x < π
1/2 for x = 0 or x = π
1 elsewhere

(3)

The domain Ωf =]0, π[, also called fluid domain, is imbedded into the larger
domain Ω =]0, 2π[ imposing now periodic boundary conditions at the bound-
ary. Thus we have Ω = Ωf ∪ Ωs, where Ωs is the penalization domain, also
called solid domain.

2.2. Analytic solution of the one-dimensional penalized equation

The penalized Poisson equation (2) can be solved analytically in each
sub-domain, i.e.,

− v′′ = f for x ∈]0, π[ (4)

−ηv′′ = 0 for x ∈]π, 2π[ (5)

and accordingly we obtain

v(x) =

{

cosmx+ A1x+ A2 for x ∈]0, π[
B1x+B2 for x ∈]π, 2π[ (6)

The coefficients can then be determined by imposing continuity of the solu-
tion and of the flux, at x = 0(= 2π) and π,

v(π−) = v(π+) and v(0+) = v(2π−) (7)

v′(π−) = ηv′(π+) and v′(0+) = ηv′(2π−) (8)

This results in

A1 =
1− (−1)m

π(1 + 1/η)
and B1 =

1

η
A1 (9)

A2 =
2π

η

1− (−1)m

π(1 + 1/η)
− 1 +B2 (10)

Only three of the four coefficients can be determined, B2 corresponds to the
additive constant.

Figure 1 shows the exact solution, w(x), and the solution of the penalized
problem, v(x) (for η = 10−1), in the casem = 1. Unlike for the penalized heat
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equation with Neumann boundary conditions [5], here there is no boundary
layer in the penalized domain. Note that, if m is even, v and w coincide
exactly. Therefore, in the following let us assume m odd. The coefficients of
the penalized solution become (with the integration constant chosen such as
to ensure zero mean value)

A1 =
2

π

η

1 + η
, B1 =

2

π

1

1 + η
, A2 = − η

1 + η
, B2 = − 3

1 + η
.

(11)
The difference between the exact solution of the non penalized problem w
and v yields the penalization error ||w(x) − v(x)|| which is of order O(η)
in Ωf , and which is in this particular case better than the general O(

√
η)

convergence behavior shown in [5] for the heat equation.
It is straightforward to compute the Fourier coefficients of the solution of

the penalized equation v(x):

v̂(k) =



























i

π

m2

k(m2 − k2)
if k even

2

π2k2
1− η

1 + η
if k odd and k 6= ±m

2

π2m2

1− η

1 + η
+

1

4
if k odd and k = ±m

(12)

Figure 2 displays the decay of the absolute value of v̂. The leading order is
∼ k−2 and the constant pre-factor is finite in the limit η → 0. There is no
‘intermediate’ regime of slow decay at low k, because there is no boundary
layer in contrast to the Dirichlet case [12]. This rate of decay of v̂ suggests
that a Galerkin truncated approximation to v converges as N−3/2.

2.3. Discretization error of the second order finite difference scheme

Now we consider the discretization of the penalized equation using cen-
tered finite differences of second order. Discretizing the equation

− dx(θ(x))dxu = f for x ∈ (0, 2π) (13)

where θ = (1− χ) + ηχ with periodic boundary conditions on N grid points
xi = i/(2π), i = 0, ..., N − 1 yields to the following linear system

−DΘD = F (14)
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whereD is the first derivative matrix (Toeplitz) and Θ = [θ(x0), θ(x1), ..., θ(xN−1)]
with θ(xi) = 1− χ(xi) + ηχ(xi)) and F = [f(x0), f(x1), ..., f(xN−1)] are vec-
tors in R

N .
The matrix A = −DΘ(x)D is singular (it has an eigenvalue 0) and a

solution only exists if F is in the image of A. For solving the linear system
thus special care has to be taken using either the pseudoinverse, or removing
one equation. This point will be addressed later.

The penalized differential operator can then be approximated to the sec-
ond order accuracy with the following finite-difference scheme:

A = −1

2
(DFΘ(x)DB +DBΘ(x)DF ) , (15)

where DB and DF are the backward and forward first derivative matrices,

DB =
1

h











1 −1
−1 1

. . .

−1 1











, DF =
1

h











−1 1
−1 1

. . .

1 −1











(16)
where h = 2π/N . Note that dim ker(A) = 1 reflecting the fact that the
(periodic) solution is defined up to an additive constant. We fix this constant
by imposing the mean value to be zero,

F1 = 0, A1,j = 1, j = 1, ..., N, (17)

where N = dim(A). This yields an invertible matrix. Figure 3 confirms the
second-order rate of convergence, provided that η is sufficiently small.

Note that we found that defining the mask function (eq. 3) using either
the value 0 or 1 at the interface, instead of 1/2, yields very similar results.

3. Eigenvalue problem of the penalized Laplace operator

3.1. Exact eigenvalue problem

Now we consider the eigenvalue problem of the Laplace operator with
homogeneous Neumann boundary conditions,

− ψ′′ = λψ x ∈ (0, π) (18)
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with ψ′(0) = ψ′(π) = 0. The resulting eigenfunctions are ψn(x) = cos(nx)
for n ∈ N and the corresponding eigenvalues are given by λn = n2. Typically,
the eigenfunctions are normalized with respect to the L2 norm and thus the
factor

√

2/π has to be included and for n = 0 we have ψ0 = 1/
√
π.

3.2. Penalized eigenvalue problem

The eigenvalue problem of the penalized Laplace operator with homoge-
neous Neumann boundary conditions reads,

− φ′′ = λφ for x ∈]0, π[ (19)

−ηφ′′ = λφ for x ∈]π, 2π[ (20)

where η > 0 and periodic boundary conditions are imposed at 0 and 2π.
Imposing continuity of the solution and of the flux, the problem can be
solved exactly and we obtain the eigenfunctions

φ(x) =

{

A1 cos(
√
λx) +B1 sin(

√
λx) for 0 < x < π

A2 cos(
√

λ/ηx) +B2 sin(
√

λ/ηx) for π < x < 2π
(21)

where the coefficients are given by solving the linear system

A1 cos(
√
λπ−) +B1 sin(

√
λπ−) = A2 cos(

√

λ/ηπ+) +B2 sin(
√

λ/ηπ+)(22)

−A1 sin(
√
λπ−) +B1 cos(

√
λπ−) = −A2

√
η sin(

√

λ/ηπ+) +B2
√
η cos(

√

λ/ηπ+)(23)

A1 cos(
√
λ0+) +B1 sin(

√
λ0+) = A2 cos(

√

λ/η2π−) +B2 sin(
√

λ/η2π−)(24)

−A1 sin(
√
λ0+) +B1 cos(

√
λ0+) = −A2

√
η sin(

√

λ/η2π−) +B2
√
η cos(

√

λ/η2π−)(25)

The coefficients A1 and B1 can be eliminated and we obtain a homogeneous
linear system for the coefficients A2 and B2.

(

a b
c d

)(

A2

B2

)

=

(

0
0

)

(26)

with coefficients

a = cos(
√

λ/η2π−) cos(
√
λπ−)−√

η sin(
√

λ/η2π) sin(
√
λπ−)− cos(

√

λ/ηπ+)(27)

b = sin(
√

λ/η2π−) cos(
√
λπ−) +

√
η cos(

√

λ/η2π) sin(
√
λπ−)− sin(

√

λ/ηπ+)(28)

c = − cos(
√

λ/η2π−) sin(
√
λπ−)−√

η sin(
√

λ/η2π) cos(
√
λπ−) +

√
η sin(

√

λ/ηπ+)(29)

d = − sin(
√

λ/η2π−) sin(
√
λπ−) +

√
η cos(

√

λ/η2π) cos(
√
λπ−)−√

η cos(
√

λ/ηπ+)(30)
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The eigenvalues λ can then be determined by computing the zeros of the
determinant of the linear system, i.e., solving the nonlinear equation

G(λ; η) = ad− bc = 0 (31)

for a given value of η. We did not succeed solving this system symbolically
for arbitrary η, but we can make the following observations:

• The function G is a periodic function in
√

λ/η.

• The value λ = 0 is a solution of eq.( 31) and thus an eigenvalue of the
penalized operator.

• The values λ = i2 and λ = ηi2 for i ∈ N play a special role as different
terms in eq.( 31) vanish.

• For the special choice of the penalization parameter η = i2/j2 with
i, j ∈ N, we have explicit solutions and the eigenvalues are λ = i2 and
λ = ηi2, for i ∈ N.

The above findings motivate the fact that λ = i2 and λ = ηi2 are indeed
good approximations of the zeros of G for general values of η ∈ R

+.

3.3. Numerical solution of the penalized eigenvalue problem

The penalized eigenvalue problem is now solved numerically using second
order finite differences. Thus we discretize,

− dx(θ(x))dxu = λu for x ∈ (0, 2π) (32)

using eq. (15) where periodic boundary conditions are imposed at 0 and 2π.
The operator −dx(θ(x))dx is self-adjoint and semi-positive definite, hence all
eigenvalues λ are real and positive.

The finite-difference penalized Laplace operator has also a zero eigen-
value, since the solution of the boundary-value problem is only defined up to
an additive constant. One can also identify eigenfunctions of the penalized
problem that correspond to the eigenmodes of the original boundary-value
problem. Three of them are displayed in figure 4. They correspond to eigen-
values number N/2, N/2 + 1 and N/2 + 2. In the fluid domain (or physical
domain, or low-diffusivity domain) they behave like cosnx, and they are
close to zero in the other half of the domain. Similar eigenfunctions exist in
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the solid (fictitious domain, or large-diffusivity domain), they correspond to
the largest eigenvalues. All non-zero eigenvalues sorted by their magnitude,
in the accending order, are shown in figure 5 for three choices of the model
parameters: N = 512, η = 10−3, N = 128, η = 10−8 and N = 512, η = 10−8.
The spectrum λi changes from an ηi2 power law to a concave function ap-
proximately at i = N/2 (figure 5, left). Applying a shift (i′ = i − N/2 + 2)
and replotting the upper half of the spectrum for i ≥ N/2 − 1 shows again
a power law behavior ∝ i2 as illustrated in (figure 5, right). For increas-
ing resolution N , we can observe that these eigenvalues in the upper half of
the spectrum do indeed converge versus the eigenvalues of the non-penalized
Laplace operator given by i2. The eigenvalues in the lower part of the spec-
trum depend on the penalization parameter η and do converge to zero for
η → 0.

The upper half of the spectrum corresponds to the modes that are only
non-trivial in either part of the domain (despite some small oscillations),
like in figure 5. The lower half of the spectrum corresponds to modes that
oscillate with the grid frequency in either subdomain. Figure 6 shows the
decay of the distance between the eigenfunctions of the discrete penalized
operator (like those in figure 4) and their exact counterparts, as h decreases.
In this example, the penalization parameter η = 10−8 is sufficiently small
so that the penalization error is smaller than the discretization error within
the range of h shown in the figure. These computations suggest that the
discrete eigenfunctions considered here are only a first-order approximation
to those of the original boundary-value problem, whereas (we remind that)
the solution to the Poisson equation is second-order accurate in h.

4. Application to the penalized Poisson equation in 2d

Now, we consider a Poisson equation in two space dimensions comple-
mented with homogeneous Neumann boundary conditions,

−∇2u = f

with ∂nu = 0. First, we consider a square domain and then a circular domain.

The two-dimensional penalized equation in Cartesian coordinates reads

− ∂x(θ(x, y)∂xu(x, y))− ∂y(θ(x, y)∂yu(x, y)) = f(x, y). (33)
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The partial derivatives are approximated using the same second order finite-
difference scheme that led to (15).

Let us first consider an example in which the interface is aligned with
the grid. The computational domain is a periodization of a square Ω =
[0, 2π] × [0, 2π], and the fluid occupies a smaller square sub-domain, Ωf =
[π/2, 3π/2]× [π/2, 3π/2]. Thus, the mask function is

χ(x, y) =































0 if x ∈]π
2
, 3π

2
[ and y ∈]π

2
, 3π

2
[;

1
2

if x = π
2
, y ∈]π

2
, 3π

2
[ or x = 3π

2
, y ∈]π

2
, 3π

2
[

or y = π
2
, x ∈]π

2
, 3π

2
[ or y = 3π

2
, x ∈]π

2
, 3π

2
[;

1
4

if x = π
2
, y = π

2
or x = 3π

2
, y = π

2

or x = π
2
, y = 3π

2
or x = 3π

2
, y = 3π

2
;

1 otherwise

(34)

Let the right-hand side of the penalized Poisson equation (33) be

f(x, y) =







































5 sin x cos 2y if x ∈]π
2
, 3π

2
[ and y ∈]π

2
, 3π

2
[;

5
2
cos 2y if x = π

2
, y ∈]π

2
, 3π

2
[;

−5
2
cos 2y if x = 3π

2
, y ∈]π

2
, 3π

2
[;

−5
2
sin x if y = π

2
, x ∈]π

2
, 3π

2
[ or y = 3π

2
, x ∈]π

2
, 3π

2
[;

−5
4

if x = π
2
, y = π

2
or x = π

2
, y = 3π

2
;

5
4

if x = 3π
2
, y = π

2
or x = 3π

2
, y = 3π

2
;

0 otherwise

(35)

Note that the zero mean value of the numerical solution in the fluid domain
is imposed by replacing the first equation in the linear system by

∑

i,j=1,N

[1− χ(xij)]uij = 0. (36)

In the fluid domain Ωf , the solution to (33) converges to

w(x, y) = sin x cos 2y, where x ∈]π
2
,
3π

2
[ and y ∈]π

2
,
3π

2
[ , (37)

as η → 0. Figure 7 displays a numerical solution to this problem with N = 32
discretization grid points in each direction and with η = 10−8. Inside the
fluid domain, the solution is close to (37). Outside, it is close to a harmonic
function (up to numerical errors). Figure 8 shows the decay of the L∞ error
of the finite-difference solution with respect to the exact solution (37) in the
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fluid domain (including the points on the boundary). Two values of η are
considered. For η = 10−2, the error saturates at h < 0.2, where h = 2π/N .
For η = 10−8, the decay approaches the theoretical −2 slope for small h
and the saturation is not observed within this range of h, implying that the
penalization error is much smaller than the discretization error.

Let us consider a circular fluid domain, with the mask function

χ(x, y) =







0 if r < π;
1
2

if r = π;
1 otherwise,

(38)

where r =
√

(x− π)2 + (y − π)2. The right-hand side is

f(x, y) =







4 cos 2r + 2 sin 2r
r

if r < π;
−1

2
if r = π;

0 otherwise.
(39)

The exact solution to the Poisson equation with homogeneous Neumann
boundary conditions in this case is

w = cos 2r +
4

π2
, where r < π , (40)

inside the fluid domain embedded in a square computational domain Ω =
[0, 2π]× [0, 2π].

We observed that the numerical solution is sensitive to the choice of the
linear equation which is replaced with the zero-mean condition. The operator
matrix has many small eigenvalues if η is small. Another possibility would be
to add the zero-mean condition without removing any of the equations and
solve an overdetermined system in the least-square sense (results not shown
here). Note that in this case we observed a smooth behavior in the solid
domain. Figure 9 shows the solution with the first equation replaced and
η = 10−8, N = 127. Figure 10 displays the same solution with the N2/2-th
equation replaced, and figure 11 with the N2/2 +N/2-th equation replaced.
The solution in the fluid is slightly different in the three cases (and seems to be
convergent with η and h = 2π/N). In the solid domain, a parasite harmonic
solution appears, which has a singularity at the point that corresponds to
the removed equation. The convergence of the two-dimensional penalized
equation for the three above cases is summarized in Figure 12 and shows
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first order convergence in all cases. The second order convergence observed
in the one-dimensional case (subsec. 2.3) and for the two-dimensional case
in the rectangular domain is thus reduced to first order. The reason is that
the Cartesian grid introduces a staircase effect and the approximation of the
circular mask function reduces to first order. Techniques to obtain higher
order for complex geometries (based on interpolation) have been proposed
in [16].

5. Conclusions

The volume penalization method to impose homogeneous Neumann bound-
ary conditions has been analyzed by considering the Poisson equation. In one
space dimension, the penalized Poisson equation has been solved analytically
for a particular right hand side and the penalization error has been deter-
mined showing O(η) convergence of the solution towards the solution of the
exact problem. We also found that no penalization boundary layer is present.
This observation is in contrast to what was found for the time-dependent heat
equation with Neumann conditions [5] and also for the Poisson equation with
Dirichlet boundary conditions [12]. In both cases, there is a penalization
boundary layer which becomes thinner for decreasing penalization parame-
ter η and its thickness scales like O(

√
η). This implies that only an O(

√
η)

convergence can be proven [1, 3, 5]. Nevertheless for the penalized Laplace
operator with Neumann conditions, the corresponding matrix becomes ill–
conditioned and the condition number behaves like O(1/η). Thus, special
care has to be taken for the numerical solution, as in addition to the sin-
gularity of the matrix (the presence of an eigenvalue 0), the linear system
becomes stiff.

The performed numerical simulations using second order finite differences
yield second order convergence of the solution towards the solution of the
Poisson equation, given that the penalization parameter is sufficiently small.
Due to the regularity of the exact solution of the penalized equation and the
O(η) behavior of the penalization error, we anticipate that for higher order
numerical methods we will also find second order convergence.

The eigenvalue problem of the penalized Laplace operator with Neumann
boundary conditions was also studied in some detail. We found that the
spectrum of the penalized operator exhibits two distinct behaviors. The
upper part of the spectrum corresponding to the large eigenvalues converges
for increasing resolution N to the spectrum of the exact operator (∝ i2).
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For the lower part, corresponding to the small eigenvalues, the spectrum
exhibits the same power law scaling but the values are multiplied with η and
thus converge to zero for η → 0. The eigenfunctions in the upper half of
the spectrum are non-trivial in either part of the domain. The lower half
of the spectrum corresponds to modes that oscillate with the grid frequency
in either subdomain. The eigenfunctions corresponding to the upper half
of the spectrum of the discrete penalized operator converge to their exact
counterparts and we found first order convergence using second order finite
differences.

In two space dimensions, we performed numerical simulations for a rect-
angular geometry for which the grid is aligned with the boundary. In this
case we obtained again second order convergence of the numerical solution.
For the circular geometry, for which the boundary is not aligned with the
Cartesian grid, only first order convergence can be observed which is due to
the geometrical error.

An interesting perspective is the extension of the volume penalization to
higher order penalization, also called active penalization, using, e.g., smooth
extensions of the solution, based for instance on Hermite interpolation, as
proposed in [11]. First promising results using active penalization for Navier–
Stokes have been presented in [19]. An extension to impose inhomogeneous
Neumann conditions has been proposed in [11] for Fourier spectral meth-
ods. The underlying idea is to use volume penalization to impose Dirichlet
boundary conditions for the derivative and then integrating the equation,
which can be easilty done in spectral space.
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Figure 1: Exact solution of the Poisson equation w(x) and exact solution of the penalized
equation v(x) using η = 10−1, both for m = 1 (top). The first (middle) and second
(bottom) derivatives are also shown.
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Figure 2: Decay of the Fourier coefficients. Absolute value of the Fourier coefficients of
the exact solution of the penalized equation for m = 1 using η = 10−1. The even and odd
wavenumbers exhibit different power law behaviors.
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Figure 3: Convergence of the second order finite difference scheme for m = 1. The L2

(left) and L∞ (right) errors are calculated only in the fluid domain Ωf .
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Figure 7: Numerical solution of the two-dimensional penalized equation (33) with η = 10−8

and N = 32 in a rectangular domain.
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Figure 8: L∞-error decay of the numerical solution of (33) with respect to the exact
solution (37) of the Poisson equation with Neumann boundary conditions in a rectangular
domain. h = 2π/N is the discretization step size and η is the penalization parameter.

20



Figure 9: Numerical solution of the two-dimensional penalized equation (33), (38), (39)
in a circular domain with η = 10−8 and N = 127, first linear equation replaced with the
zero-mean condition. Top: Zoom of solution in the fluid domain. Bottom: Total domain
illustrating the singular behavior in the solid domain.
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Figure 10: Numerical solution of the two-dimensional penalized equation (33), (38), (39)
in a circular domain with η = 10−8 and N = 127, N2/2-th linear equation replaced with
the zero-mean condition. Top: Zoom of solution in the fluid domain. Bottom: Total
domain illustrating the singular behavior in the solid domain.
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Figure 11: Numerical solution of the two-dimensional penalized equation (33), (38), (39)
in a circular domain with η = 10−8 and N = 127, N2/2+N/2-th linear equation replaced
with the zero-mean condition. Top: Zoom of solution in the fluid domain. Bottom: Total
domain illustrating the smooth behavior in the solid domain.
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Figure 12: Convergence plots of the two-dimensional penalized equation in a circular
domain for the three above cases (see figures 9, 10 and 11, respectively).
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