A note on sharpness of the local Kato-smoothing property for dispersive wave equations - Archive ouverte HAL
Article Dans Une Revue Proceedings of the American Mathematical Society Année : 2017

A note on sharpness of the local Kato-smoothing property for dispersive wave equations

Bing-Yu Zhang
  • Fonction : Auteur
  • PersonId : 980288
Ning Zhong
  • Fonction : Auteur
  • PersonId : 995155

Résumé

It is well known that solutions of the Cauchy problem for general dispersive equations $w_t +iP(D)w=0,\quad w(x,0)=q (x), \quad x\in \mathbb{R}^n, \ t\in \mathbb{R}$, enjoy the local smoothing property $q\in H^s (\R ^n) \implies w\in L^2 \Big (-T,T; H^{s+\frac{m-1}{2}}_{\textrm{loc}} \left (\R^n\right )\Big )$, where m is the order of the pseudo-differential operator P(D). This property, called local Kato smoothing, was first discovered by Kato for the KdV equation and implicitly shown later for linear Schrödinger equations. In this paper, we show that the local Kato smoothing property possessed by solutions general dispersive equations in the 1D case is sharp, meaning that there exist initial data $q\in H^s(\R)$ such that the corresponding solution $w$ does not belong to the space $L^2(-T,T; H^{s+\frac{m-1}{2} +\epsilon}_{\textrm{loc}} (\R) )$ for any $\epsilon >0$.
Fichier principal
Vignette du fichier
sharpKato.pdf (153.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01294160 , version 1 (27-03-2016)

Identifiants

  • HAL Id : hal-01294160 , version 1

Citer

Shu-Ming Sun, Emmanuel Trélat, Bing-Yu Zhang, Ning Zhong. A note on sharpness of the local Kato-smoothing property for dispersive wave equations. Proceedings of the American Mathematical Society, 2017, 145 (2), pp.653--664. ⟨hal-01294160⟩
333 Consultations
266 Téléchargements

Partager

More