On the exponential convergence rate for a non-gradient Fokker-Planck equation in Computational Neuroscience - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

On the exponential convergence rate for a non-gradient Fokker-Planck equation in Computational Neuroscience

Résumé

This paper concerns the proof of the exponential rate of convergence of the solution of a Fokker-Planck equation, with a drift term not being the gradient of a potential function and endowed by Robin type boundary conditions. This kind of problem arises, for example, in the study of interacting neurons populations. Previous studies have numerically shown that, after a small period of time, the solution of the evolution problem exponentially converges to the stable state of the equation.
Fichier principal
Vignette du fichier
CMT7.pdf (131.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01292611 , version 1 (23-03-2016)

Identifiants

Citer

J-A Carrillo, Simona Mancini, M.-B Tran. On the exponential convergence rate for a non-gradient Fokker-Planck equation in Computational Neuroscience. 2016. ⟨hal-01292611⟩
124 Consultations
134 Téléchargements

Altmetric

Partager

More