Journal Articles ACS Nano Year : 2016

Superamphiphobic Silicon-Nanowire-Embedded Microsystem and In-Contact Flow Performance of Gas and Liquid Streams

Dong-Hyeon Ko
  • Function : Author
Wurong Ren
  • Function : Author
Jin-Oh Kim
  • Function : Author
Jun Wang
  • Function : Author
  • PersonId : 881572
Hao Wang
Siddharth Sharma
  • Function : Author
Dong-Pyo Kim
  • Function : Author

Abstract

Gas and liquid streams are invariably separated either by a solid wall or by a membrane for heat or mass transfer between the gas and liquid streams. Without the separating wall, the gas phase is present as bubbles in liquid or, in a microsystem, as gas plugs between slugs of liquid. Continuous and direct contact between the two moving streams of gas and liquid is quite an efficient way of achieving heat or mass transfer between the two phases. Here, we report a silicon nanowire built-in microsystem in which a liquid stream flows in contact with an underlying gas stream. The upper liquid stream does not penetrate into the lower gas stream due to the superamphiphobic nature of the silicon nanowires built into the bottom wall, thereby preserving the integrity of continuous gas and liquid streams, although they are flowing in contact. Due to the superamphiphobic nature of silicon nanowires, the microsystem provides the best possible interfacial mass transfer known to date between flowing gas and liquid phases, which can achieve excellent chemical performance in two-phase organic syntheses.
No file

Dates and versions

hal-01291290 , version 1 (21-03-2016)

Identifiers

Cite

Dong-Hyeon Ko, Wurong Ren, Jin-Oh Kim, Jun Wang, Hao Wang, et al.. Superamphiphobic Silicon-Nanowire-Embedded Microsystem and In-Contact Flow Performance of Gas and Liquid Streams. ACS Nano, 2016, 10 (1), pp.1156-1162. ⟨10.1021/acsnano.5b06454⟩. ⟨hal-01291290⟩
176 View
0 Download

Altmetric

Share

More