Some approximate Godunov schemes to compute shallow-water equations with topography - Archive ouverte HAL
Article Dans Une Revue Computers and Fluids Année : 2003

Some approximate Godunov schemes to compute shallow-water equations with topography

Résumé

We study here the computation of shallow-water equations with topography by Finite Volume methods, in a one-dimensional framework (though all methods introduced may be naturally extended in two dimensions). All methods performed are based on a dicretisation of the topography by a piecewise function constant on each cell of the mesh, from an original idea of A.Y. Le Roux et al.. Whereas the Well-Balanced scheme of A.Y. Le Roux is based on the exact resolution of each Riemann problem, we consider here approximate Riemann solvers, namely the VFRoencv schemes. Several single step methods are derived from this formalism, and numerical results are compared to a fractional step method. Some tests cases are presented : convergence to steady states in subcritical and supercritical conngurations, occurence of dry area by a drain over a bump and occurence of vacuum by a double rarefaction wave over a step. Numerical schemes, combined with an appropriate high order extension, provide accurate and convergent approximations.
Fichier principal
Vignette du fichier
COMPFLUIDS.Stvenant.pdf (488.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01290889 , version 1 (18-03-2016)

Identifiants

Citer

Thierry Gallouët, Jean-Marc Hérard, Nicolas Seguin. Some approximate Godunov schemes to compute shallow-water equations with topography. Computers and Fluids, 2003, 32 (4), pp.479-513. ⟨10.1016/S0045-7930(02)00011-7⟩. ⟨hal-01290889⟩
191 Consultations
1320 Téléchargements

Altmetric

Partager

More