Y. Venema, L. Santocanale, Completeness for flat modal fixpoint logics, - Archive ouverte HAL
Communication Dans Un Congrès Année : 2007

Y. Venema, L. Santocanale, Completeness for flat modal fixpoint logics,

Résumé

Given a set Γ of modal formulas of the form γ(x,p), where x occurs positively in γ, the language L#(Γ) is obtained by adding to the language of polymodal logic connectives #γ, γ in Γ. Each term #γ is meant to be interpreted as the least fixed point of the functional interpretation of the term γ(x). Given such a Γ, we construct an axiom system K#(Γ) which is sound and complete w.r.t. the concrete interpretation of the language L#(Γ) on Kripke frames. If Γ is finite, then K#(Γ) is a finite set of axioms and inference rules.

Dates et versions

hal-01290705 , version 1 (18-03-2016)

Identifiants

Citer

Luigi Santocanale, Yde Venema. Y. Venema, L. Santocanale, Completeness for flat modal fixpoint logics,. 14th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, Oct 2007, Yerevan, Armenia. pp.499--513, ⟨10.1007/978-3-540-75560-9_36⟩. ⟨hal-01290705⟩
153 Consultations
0 Téléchargements

Altmetric

Partager

More