Direct Monolithic Integration of Vertical Single Crystalline Octahedral Molecular Sieve Nanowires on Silicon - Archive ouverte HAL
Article Dans Une Revue Chemistry of Materials Année : 2014

Direct Monolithic Integration of Vertical Single Crystalline Octahedral Molecular Sieve Nanowires on Silicon

Résumé

We developed an original strategy to produce vertical epitaxial single crystalline manganese oxide octahedral molecular sieve (OMS) nanowires with tunable pore sizes and compositions on silicon substrates by using a chemical solution deposition approach. The nanowire growth mechanism involves the use of track-etched nanoporous polymer templates combined with the controlled growth of quartz thin films at the silicon surface, which allowed OMS nanowires to stabilize and crystallize, alpha-quartz thin films were obtained after thermal activated crystallization of the native amorphous silica surface layer assisted by Sr2+- or Ba2+-mediated heterogeneous catalysis in the air at 800 degrees C. These a-quartz thin films work as a selective template for the epitaxial growth of randomly oriented vertical OMS nanowires. Therefore, the combination of soft chemistry and epitaxial growth opens new opportunities for the effective integration of novel technological functional tunneled complex oxides nanomaterials on Si substrates.
Fichier non déposé

Dates et versions

hal-01289917 , version 1 (17-03-2016)

Identifiants

Citer

Clément Sanchez, Juan Rodriguez-Carvajal, Narcis Mestres, Adrian Carretero-Genevrier, Judith Oró-Solé, et al.. Direct Monolithic Integration of Vertical Single Crystalline Octahedral Molecular Sieve Nanowires on Silicon. Chemistry of Materials, 2014, 26 (2), pp.1019-1028. ⟨10.1021/cm403064u⟩. ⟨hal-01289917⟩
191 Consultations
0 Téléchargements

Altmetric

Partager

More