The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension
Résumé
We prove that a holomorphic line bundle on a projective manifold is pseudo-effective if and only if its degree on any member of a covering family of curves is non-negative. This is a consequence of a duality statement between the cone of pseudo-effective divisors and the cone of " movable curves " , which is obtained from a general theory of movable intersections and approximate Zariski decomposition for closed positive (1, 1)-currents. As a corollary, a projective manifold has a pseudo-effective canonical bundle if and only if it is not uniruled. We also prove that a 4-fold with a canonical bundle which is pseudo-effective and of numerical class zero in restriction to curves of a good covering family, has non-negative Kodaira dimension.
Domaines
Géométrie algébrique [math.AG]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...