Interpretation of Finite Volume discretization schemes for the Fokker Planck equation as gradient flows for the discrete Wasserstein distance
Résumé
This paper establishes a link between some space discretization strategies of the Finite Volume type for the Fokker-Planck equation in general meshes (Voronoï tesselations) and gradient flows on the underlying networks of cells, in the framework of discrete Wasserstein distances on graphs recently proposed by Maas [6].
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...