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Abstract: This paper establishes a link between some space discretization strate-

gies of the Finite Volume type for the Fokker-Planck equation in general meshes

(Voronoï tesselations) and gradient flows on the underlying networks of cells, in

the framework of discrete Wasserstein distances on graphs recently proposed by

Maas [6].
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1 Introduction

We aim here at identifying gradient flow structures in some space-discretization

schemes of the Fokker-Planck equation on general meshes, in the spirit of the

approaches proposed recently in [1, 2] for cartesian discretizations. Since the core

of the paper consists in building links between macroscopic notions / properties

and their discrete counterparts, in a context where two reference measures are

present (uniform Lebesgue measure and stationary measure associated to an

attractive potential), let us start by fixing some principles in terms of notation.

Probability measures will be denoted by the letter p (we shall use the same

letter to denote their density with respect to the underlying Lebesgue measure,

or its discrete counterpart), stationary measures (with respect to some evolution

process) by π, and relative densities with respect to π by ρ. All discrete notions

F. Al Reda: Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, 91405 Orsay

cedex, France

B. Maury: Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, 91405 Orsay

cedex, France



2 F. Al Reda and B. Maury

will be singled out by a tilda sign, e.g. p̃, π̃, etc ... The space variable will be

denoted by r, while x and y will be used to denote discrete vertices.

Since the seminal work of Jordan, Kinderlehrer and Otto [3] in 1998, it is

known that the Fokker-Planck (FP) equation in a domain Ω:

∂tp− ∆p− ∇ · (p∇Φ) = 0,

with appropriate no-flux boundary conditions, can be interpreted in the Wasser-

stein space as the gradient flow for

H(p) =

∫

Ω

p log
( p
π

)
dr


=

∫

Ω

ρ log (ρ) dπ with ρ = p/π


 ,

that is the relative entropy with respect to the stationary measure π = e−Φ, up

to a normalization constant. This property is schematized in the diagram below

(see Fig. 1, blocks A−B − C, on the top), and we refer the reader to [4, 5] for

a thorough description of the underlying theory.

At the discrete level, a similar framework has been proposed in [6, 7]. The

euclidean domain is replaced by a network N , defined by its (finite) set of vertices

V and a Markovian kernel

(K(x, y))x,y∈V , with K(x, y) ≥ 0 ,
∑

y∈V

K(x, y) = 1 ∀x ∈ V.

The stationary measure is denoted by π̃, it verifies π̃ =tKπ̃. It is unique as soon

as K is irreducible, i.e. ∀ x, y ∈ V there exists a path (x0 =x, x1, x2, . . . , xm=y)

such that K(x, x1) ×K(x1, x2) × . . . ×K(xm−1, y) > 0, and then π̃(x) > 0 for

all x ∈ V . We say that K is reversible if π̃(x)K(x, y) = K(y, x)π̃(y) for all x, y

in V (detailed balance equation). The discrete counterpart of the FP equation

is the heat flow equation

∂tρ̃+ (I −K)ρ̃ = 0, (1)

where ρ̃ is the density of a probability measure p̃ on V with respect to π̃. Note

that the straight discrete counterpart of FP equation would be an equation of the

measure p̃ itself, with K replaced by tK, and
∑
p̃(x) = 1, but we shall follow [6]

in favoring densities with respect to π̃, i.e. densities ρ̃ verifying
∑
ρ̃(x)π̃(x) = 1.

It has been established in [6] that (1), for an appropriate metric W̃2 which is

the discrete counterpart of the standard Wasserstein distance, is a gradient flow

of the discrete relative entropy

H̃(ρ̃) =
∑

x∈V

ρ̃(x) log(ρ̃(x)) π̃(x) (2)
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Fokker Planck equation

Gradient flow

Gradient flow

Wasserstein dist. in P(Ω)

W2(p0, p1)2 =

with ∂tpt + ∇ · (pt∇ψt) = 0.

inf
pt,ψt

∫
1

0

∫
Ω

|∇ψt|
2 dpt

Relative entropy

Relative entropy

with respect to

with respect to

the stationary measure

the stationary measure

dρ̃/dt + (I −K)ρ̃ = 0

dp̃/dt + (I −tK)p̃ = 0

∂tp− ∆p− ∇ · (p∇Φ) = 0

or ∂tρ− 1

π
∇ · (π∇ρ) = 0

with tKπ̃ = π̃, ρ̃ = p̃/π̃.

with π = e−Φ, ρ = p/π.

H(p) =
∫
p log(p/π) dx

H̃(ρ̃) =∑

x∈V

ρ̃(x) log(ρ̃(x))π̃(x).

Gromov Hausdorff

convergence convergence
convergence

Space disc.
quadrature

π = e−Φ.

A B C

Ã B̃ C̃

1 3

1′

2

3′

Heat flow on a network

K = (K(x, y))x,y∈V×V

Wasserstein-like metric

on a network N :

discrete Benamou-Brenier

formula (see Def. 2.4).

in a domain Ω ⊂ Rd

Fig. 1. Continuous setting versus discrete setting

with respect to the Wasserstein-like metric W̃2 (see Section 2 for detailed def-

initions).This discrete setting is also schematized in Fig. 1 (blocks Ã − B̃ − C̃,

on the bottom).

Although it was not the original purpose in [6], a connection can be made

between the two settings by means of discretization strategies. As detailed in the

next section, an euclidean domain Ω can be partitionned into cells (e.g. Voronoï

cells associated to a collection of points in the domain, see Fig. 2). Now consider

the network associated to those cells (one may consider that the vertices are

the centroids of the cells). To any measure µ on Ω one can associate a discrete

measure that is, for each vertex associated to cell K, the measure µ(K). As

detailed in [11], a link can be made between the Wasserstein distance on the

euclidean domain and the discrete Wasserstein distance on the network, at least

in the case of a regular decomposition (cartesian grid). This link will be described

more precisely in the next section, it is indicated by the arrow 2 in Fig. 1 that

relates blocks B and B̃. Besides, integrating any function of the density at

the continuous level has a discrete counterpart (we are especially interested in
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entropy-like functionals), it consists in summing up the corresponding values for

the discrete densities built as described above. This approach can be seen as

a quadrature formula to compute the approximation of an integral, for which

convergence properties can be expected as the cell decomposition is refined. It

is indicated by the arrow 3 in Fig. 1 that relates blocks C and C̃.

The core of the present article is an attempt toward closing the diagram

by expliciting the link between blocks A and Ã (arrow 1). More precisely, we

aim at showing that, in the context of Finite Volume methods, some space dis-

cretization strategies of the FP equation lead to Ordinary Differential Equation

that are consistent with the gradient flow structure on the underlying network.

Note that this interpretation of Finite Volume discretization schemes as gradient

flows has already been addressed in two recent papers. In [2], the authors use

this gradient flow structure to characterize the long time behavior of discrete

solutions to a fourth order equation. In [1], a finite volume scheme is studied

in the discrete Wasserstein setting, and a new type of convergence proof is pro-

posed in this context. In both cited papers, the space discretization is regular

(i.e. 1-dimensional for the second one, and d-dimensional with a cartesian grid

for the first one). We aim here at showing that an extension to non regular

space-discretization is not out of reach. In particular, we show that Finite Vol-

ume discretization strategies for very general meshes lead to problems that can

be interpreted as gradient flows for a discrete Wasserstein-like metric, with a

functional that can be seen as an approximation of its continuous counterpart.

Let us make it clear, though, that no discrete-to-continuous convergence result

is known for the Wasserstein distance for non regular meshes.

The outline of the paper is as follows. In Section 2 we recall the main ob-

tained result on the FP equation and its gradient flow formulation, we define the

Wasserstein-like distance of Maas and state his first result in terms of gradient

flows using this distance. Then we describe the Gromov-Hausdorff convergence

in the special case of the d-dimensional torus and show the convergence of the

discrete relative entropy H̃ to its continuous counterpart H. Section 3 proposes

a Finite Volume discretization of the FP equation in space and the analysis of

the Markov chain deduced from this discretization and seen as an ODE in time.

We show that this ODE is the gradient flow of the discrete relative entropy H̃

and we finalize the paper with some conclusives remarks and perspectives.
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N

Ω

Fig. 2. From the Euclidean domain to the associated network

2 Preliminaries

We describe in this section with some details the constitutives blocks of the

diagram presented in Fig. 1.

Blocks A-B-C: Fokker Planck equation as a gradient flow, continuous

setting

Let us first recall some basic facts on the Wassertein space of measures and

gradient flows therein (we refer to [8, 5, 4] for a detailed presentation of these

considerations). Let Ω be a bounded domain. For any two measures p0 and p1

in P(Ω), the (quadratic) Wasserstein distance between them is defined by

W2(p0, p1)2 = inf
γ∈Π

∫

Ω×Ω

∣∣r′ − r
∣∣2 dγ(r, r′),

where Π is the subset of P(Ω × Ω) for all those γ with marginals p0 and p1,

respectively, i.e.
∫

Ω×Ω

ϕ(r) dγ(r, r′) =

∫

Ω

ϕ(r) dp0(r) ,

∫

Ω×Ω

ψ(r′) dγ(r, r′) =

∫

Ω

ψ(r′) dp0(r′)

for any continuous functions ϕ and ψ.

An alternative formulation has been proposed by Benamou-Brenier [9], it

consists in writing the squared Wasserstein distance as follows (we consider here

a convex domain):

W2(p0, p1)2 = inf
pt,ψt





1∫

0

∫

Ω

|∇ψt(r)|2 pt(r) dx dt



 , (3)
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where the infimum runs over curves (pt)t∈[0,1] in P(Ω) that join p0 and p1 in

the following way (transport of pt by ∇ψt):

∂tpt + ∇ · (pt∇ψt) = 0. (4)

Now we aim at defining a notion of gradient for a functional H that is

consistent with the Wasserstein framework. The more appropriate notion is that

of Fréchet subdifferential in a Wasserstein sense, that can be defined for a wide

class of functionals, with very weak smoothness assumptions (see e.g. [4]). Since

this notion does not have any natural counterpart at the discrete level, we shall

focus here on a more restrictive definition of the gradient:

Definition 2.1. Let H : P(Ω) → R be a functional. We shall say that H

admits a gradient w ∈ L2
p at p ∈ P(Ω), and then write

gradH(p) = w,

if, for every measure path t → pt defined in a neighborhood of 0 and satisfying:

∂pt
∂t

+ ∇ · (ptvt) = 0 , p0 = p ,

where vt is a L2 vector field, it holds that

d

dt
H(pt)|t=0 = lim

t→0

H(pt) −H(p0)

t
=

∫

Ω

v0 · w dp.

We may now define the notion of gradient flow in this setting:

Definition 2.2. The probability measure path t 7→ pt is said to be a gradient

flow for a functional H if pt verifies (in the distributional sense)

∂tpt + ∇ · (ptut) = 0 , ut = −gradH(pt) for a.e. t,

where the gradient is defined according to Def. 2.1.

Let us consider the case where H reads

H(p) =

∫

Ω

f(r) dp(r) +

∫

Ω

g(p(r)) dr,

where f and g are regular functions. Then the transport velocity ut can be

identified as

ut = −∇f − ∇
(
g′(pt)

)
. (5)
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Now consider the Fokker-Planck equation on a domain Ω:




∂p

∂t
− ∆p− ∇.(p∇Φ) = 0, in Ω

∂p

∂n
− p

∂Φ

∂n
= 0, on ∂Ω.

(6)

and the relative entropy functional:

H(p) =

∫

Ω

p(r) log

(
p(r)

π(r)

)
dr

= −
∫

Ω

log(π(r)) dp(r) +

∫

Ω

p(r) log(p(r)) dr. (7)

We obtain from (5)

ut = −∇f − ∇
(
g′(pt)

)
=

∇π
π

− ∇(1 + log(pt)) = −∇Φ − ∇pt
pt

,

which identifies the FP equation (6) as a gradient flow in the Wasserstein sense

for the relative entropy functional (7). We refer again to [4, 5] for a thorough

presentation of these facts.

Blocks Ã - B̃ - C̃: Discrete setting

Let V be a finite set.

Definition 2.3. We say that (K(x, y))x,y∈V is an irreducible and reversible

Markov kernel on V × V if K satisfies:

1. K(x, y) ≥ 0 ∀x, y ∈ V ,
∑

y∈V

K(x, y) = 1 ∀x ∈ V.

2. The irreducibility condition: K(x, y) ≥ 0 ∀x, y ∈ V ,
∑
y∈V K(x, y) =

1 ∀x ∈ V.

3. The reversibility condition: π̃(x)K(x, y) = K(y, x)π̃(y) ∀x, y ∈ V,

Let (K(x, y))x,y∈V be as in the definition. We denote by π̃ the unique stationary

measure of K, such that

π̃(x) =
∑

y∈V

K(y, x)π̃(y)
(
i.e. π̃ =tKπ̃

)
, π̃(x) > 0 ∀x ∈ V ,

∑

x∈V

π̃(x) = 1.

We define the associated set of probability densities on V by

D(V ) =

{
ρ̃ ∈ (R+)V ,

∑

x∈V

ρ̃(x)π̃(x) = 1

}
.

Following [6], we define the discrete gradient, the discrete divergence and the

two scalar products with respect to a fixed ρ̃ ∈ D(V ) and π̃ resp., as follows:
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– Discrete gradient: For a function ψ̃ : V → R, we define its discrete gradient

∇̃ψ̃ : V × V → R by

∇̃ψ̃(x, y) = ψ̃(y) − ψ̃(x) ∀x, y ∈ V × V.

– Discrete divergence: For a discrete field ũ : V ×V → R, we define its discrete

divergence ∇̃ · ũ : V → R by

(∇̃ · ũ)(x) =
1

2

∑

y∈V

(ũ(x, y) − ũ(y, x))K(x, y) ∀x ∈ V.

Note that for an anti-symmetric field u, i.e. ũ(x, y) = −ũ(y, x), the discrete

divergence reads:

(∇̃ · ũ)(x) =
∑

y∈V

(ũ(x, y))K(x, y) ∀x ∈ V.

– Scalar product with respect to π̃: For ψ̃, φ̃ : V → R, we define their scalar

product with respect to π̃ by
〈〈
ψ̃, φ̃

〉〉
π̃

=
∑

x∈V

ψ̃(x)φ̃(x)π̃(x).

– Scalar product with respect to ρ̃: For ũ, ṽ : V × V → R, we define their

scalar product with respect to ρ̃ by

〈ũ, ṽ〉
ρ̃

=
1

2

∑

x,y∈V

ũ(x, y)ṽ(x, y)K(x, y)θ(ρ̃(x), ρ̃(y))π̃(x),

where θ(·, ·) is defined by (9), and we denote by ‖ ũ ‖
ρ̃

the associated norm:

‖ũ‖
ρ̃

=
√

〈ũ, ũ〉
ρ̃
.

Note that the latter is a discrete counterpart of the norm of a velocity field

in L2
p, with p = ρπ.

We denote by 〈., .〉
1

the scalar product with respect to the density ρ̃ = 1 defined

by: ρ̃(x) = 1, ∀x ∈ V . We can easily check that the integration by parts formula

holds in the following sense:
〈

∇̃ψ̃, ũ
〉

1

= −
〈〈
ψ̃, ∇̃ · ũ

〉〉
π̃
.

The definition of the discrete transportation metric is inspired by the

Benamou-Brenier formulation, it translates Eq. (4) at the discrete level. It is

defined as (see [6, 10, 7]):
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Definition 2.4. For ρ̃0, ρ̃1 ∈ D(V ) we set:

W̃2(ρ̃0, ρ̃1)2 = inf
ρ̃t,ψ̃t





1

2

1∫

0

∑

x,y∈V

(
ψ̃t(y) − ψ̃t(x)

)2

K(x, y)θ(ρ̃t(x), ρ̃t(y))π̃(x) dt





where the infimum runs over all piecewise C1 curves ρ̃t : [0, 1] → D(V ) and all

piecewise continuous ψ̃t : [0, 1] → RV satisfying:

dρ̃t
dt

(x) +
∑

y∈V

(
ψ̃t(y) − ψ̃t(x)

)
K(x, y)θ(ρ̃t(x), ρ̃t(y)) = 0 ∀x ∈ V (8)

where:

θ(α, β) =

1∫

0

α1−tβtdt =





β − α

log(β) − log(α)
, if α 6= β

α, if α = β

(9)

is the logarithmic mean of α and β.

Using the definitions of the discrete gradient and the discrete divergence, W̃2

can also be formulated as follows (see [6], Lemma 3.5):

W̃2(ρ̃0, ρ̃1)2 = inf
ρ̃t,ψ̃t





1∫

0

‖∇̃ψ̃t‖2

ρ̃t

dt





where the infimum runs over all piecewise C1 curves (ρ̃t)t∈[0,1] joining ρ̃0 and

ρ̃1 in D(V ) according to

dρ̃t
dt

(x) + ∇̃ · (Θ(ρ̃t) • ∇̃ψ̃)(x) = 0, ∀x ∈ V (10)

where Θ(ρ̃t) : V × V → R is defined by: Θ(ρ̃t)(x, y) = θ(ρ̃t(x), ρ̃t(y)) and •
denotes the entrywise product of two matrices.

The Wasserstein gradient of a functional may now be defined following [6],

Prop. 4.2.

Definition 2.5. Let H̃ : D(V ) → R be a functional. We shall say that H̃

admits a gradient w̃ ∈ RV×V at ρ̃ ∈ D(V ), and then write

g̃rad H̃(ρ̃) = w̃,

if, for any measure path t → ρ̃t on D(V ) defined in a neighborhood of 0, with

dρ̃t
dt

+ ∇̃ · (Θ(ρ̃t) • ṽt) = 0 , ρ̃0 = ρ̃,

it holds that
d

dt
H̃(ρ̃t)|t=0 = 〈w̃, ṽ0〉

ρ̃
.
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After computing the gradient of a functional H̃ , we can write its gradient flow

equation in D(V ).

Definition 2.6. Let H̃ : D(V ) → R be a functional and g̃rad H̃ be its gradient

according to Def (2.5). We define the discrete gradient flow equation of H̃ by:

dρ̃

dt
(x) − ∇̃ · (Θ(ρ̃) • g̃rad H̃(ρ̃))(x) = 0 ∀x ∈ V.

Like in the continuous setting, the gradient (in the previous sense) of a certain

class of functionals can be computed explicitly.

Proposition 2.7. Let H̃ be a generalized entropy functional :

H̃ : ρ̃ ∈ D(V ) 7−→ H̃(ρ̃) =
∑

x∈V

f(x)ρ̃(x)π̃(x) +
∑

x∈V

g(ρ̃(x))π̃(x) ∈ R

where f, g are differentiable function, f, r : (0, 1) → R. Then

g̃rad H̃(ρ̃) = ∇̃f + ∇̃g′ ◦ ρ̃).

Proof. It is a straightforward application of the definitions above

d

dt
H̃(ρ̃t)|t=0 =

∑

x∈V

(f(x) + g′(ρ̃t(x)))
dρ̃t
dt

(x)π̃(x)|t=0

= −
∑

x∈V

(f(x) + g′(ρ̃t(x)))∇̃ · (Θ(ρ̃t) • ṽt)(x)π̃(x)|t=0

= −
〈〈
f + g′ ◦ ρ̃, ∇̃ · (Θ(ρ̃) • ṽ0)

〉〉
π̃

=
〈

∇̃(f + g′ ◦ ρ̃),Θ(ρ̃) • ṽ0

〉
1

=
〈

∇̃f + ∇̃g′ ◦ ρ̃, ṽ0

〉
ρ̃

which concludes the proof.

Heat flow equation as gradient flow of the discrete entropy

Note that the heat flow equation

dρ̃

dt
+ (I −K)ρ̃ = 0, (11)

where K = (K(x, y))x,y is the Markov matrix, can also be written

dρ̃

dt
(x) − ∇ · (∇ρ̃)(x) = 0 ∀x ∈ V.

We may now identify the heat flow equation with the gradient flow for the

relative entropy.
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Theorem 2.8. The gradient flow in D(V ) (according to Def (2.6)) of the dis-

crete relative entropy

H̃(ρ̃) =
∑

x∈V

ρ̃(x) log(ρ̃(x))π̃(x)

is the heat flow equation (11).

Proof. For a detailed proof, we refer the reader to [6], Theorem 1.2. From Propo-

sition 2.7, we have that

g̃rad H̃(ρ̃) = ∇̃(1 + log(ρ̃)) = ∇̃(log(ρ̃))

for g(ρ̃) = ρ̃ log ρ̃ and f = 0, and the discrete gradient flow equation of H̃ is:

dρ̃

dt
(x) − ∇̃ · (Θ(ρ̃) • ∇̃(log(ρ̃)))(x) = 0 ∀x ∈ V.

Link B - B̃ (arrow 2): Link between continuous and discrete Wasser-

stein metrics

A first result of convergence of the discrete transportation metric was proven

in [11] (Theorem 3.15).

We consider the space P(Td) of all the probability measures on the d-

dimensional torus Td = Rd/Zd endowed with the L2-Wasserstein metric and

the d-dimensional periodic lattice Tdn = (Z/nZ)d and endow the space of prob-

ability densities D(Tdn) with the renormalised discrete transportation metric

W̃2,n = W̃2/n
√

2d where the Markov kernel K is the one of a simple random

walk (uniform transition probabilities) and whose stationary measure δ̃ is the

uniform measure on Tdn.

In this special case of δ̃, we can identify probability measures on Tdn with

their probability densities with respect to δ̃. So we consider that P(Tdn) ≡
D(Tdn).

The convergence result is established in the sense of Gromov-Hausdorff that

is defined by:

Definition 2.9. A sequence of compact metric spaces (Xn, dn) is said to con-

verge in the sense of Gromov-Hausdorff to a compact metric space (X , d), if

there exists a sequence of maps fn : X → Xn which are:

– ǫn-isometric, i.e., for all x, y ∈ X ,

|dn(fn(x), fn(y)) − d(x, y)| ≤ ǫn
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– ǫn-surjective, i.e., for all xn ∈ Xn there exists x ∈ X with

d(fn(x), xn) ≤ ǫn

for some sequence ǫn → 0.

Now we are ready to state the convergence theorem of the discrete metrics W̃2,n:

Theorem 2.10. The metric spaces (P(Tdn), W̃2,n) converge to (P(Td),W2) in

the sense of Gromov-Hausdorff as n → ∞.

Remark 2.11. An informal convergence result can be done for a general sta-

tionary measure by discretizing the continuous FP equation with the scheme de-

scribed in Section 3 and writing the corresponding discrete distance which looks

almost like a discretization of the continuous Wasserstein distance.

Link C̃ - C̃ (arrow 3): Quadrature for the entropy functionnal

In order to strenghen the relation between the discrete setting and the continuous

one, we are going to show the convergence of the discrete relative entropy to its

continuous counterpart (C̃ −→ C in the Diagram of Fig. 1). We consider a

collection of n points V in Ω, and construct a partition (Kx)x of the domain

which is relative to V , i.e. each cell Kx of the partition contains one point of V

(which is x) and:

Ω =
⋃

x∈V

Kx, Kx ∩Ky = ∅ ∀x, y ∈ V.

Let h be the diameter of the partition Kx, i.e. h = maxx∈V diam(Kx). For

any probability measure p in P(Ω), we define its discrete counterpart by:

p̃(x) =

∫

Kx

p(r) dr, ∀x ∈ V, p̃ ∈ P(V ) (12)

and then we define its discrete density by:

ρ̃(x) =
p̃(x)

π̃(x)
, ∀x ∈ V, ρ̃ ∈ D(V ).

Proposition 2.12. Let p, π be two C1(Ω) densities with respect to the Lebesgue

measure, bounded from below and above, i.e. ∃ m,M > 0 such that 0 < m ≤
p, π ≤ M , and p̃h, π̃h be their discrete counterpart defined according to (12).
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We denote by ρ̃h the discrete density of p̃h with respect to π̃h. Then, the discrete

relative entropy:

H̃h(ρ̃h) =
∑

x∈Vh

ρ̃h(x) log(ρ̃h(x))π̃h(x)

converges to the continuous relative entropy:

H(p) =

∫

Ω

p(r) log

(
p(r)

π(r)

)
dr

when h → 0, at the first order in h.

Proof. We substract the continuous and the discrete quantities:

∣∣∣H(p) − H̃(ρ̃h)
∣∣∣ =

∣∣∣∣∣∣

∑

x∈V



∫

Kx

p(r) log

(
p(r)

π(r)

)
dr − p̃(x) log

(
p̃(x)

π̃(x)

)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑

x∈V

∫

Kx

p(r)

(
log

(
p(r)

π(r)

)
− log

(
p̃(x)

π̃(x)

))
dr

∣∣∣∣∣∣

≤
∑

x∈V

∫

Kx

p(r)C

∣∣∣∣
p(r)

π(r)
− p̃(x)

π̃(x)

∣∣∣∣ dr

where C is a Lipchitz constant for log on [mM , Mm ]. Then, by straightforward

computations using the boundedness from below and above of the measureswe

can bound the substraction by C ′ ×h where C ′ is a constant depending on m,M

and C.

3 Discretization of the Fokker-Planck equation

We re-write the Fokker-Planck system by replacing ∇Φ by −∇π/π in the first

equation, we get:

∂p

∂t
− ∇ ·

(
∇p− p

∇π
π

)
= 0, or equivalently:

∂p

∂t
− ∇ · (π∇

( p
π

)
) = 0 (13)

Finite volume discretization

Let V be a collection of points in Ω, and let (Kx)x be the associated Voronoi

tesselation. We denote by N the dual network of the space discretization (two
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x

y

Kx

Ky

Γxy

Fig. 3. Voronoi cells with the used notations

vertices are connected whenever the corresponding cells are adjacent). Then we

discretize in space the FP equation (in its form (13)) by a Finite Volume scheme

(see e.g. [12]). By integrating the equation on Kx, we get:

dp̃

dt
(x) −

∫

∂Kx

π∇
( p
π

)
nx dσ =

dp̃

dt
(x) −

∑

y∼x

∫

Γxy

π∇
( p
π

)
nxy dσ = 0

where nx is the outward normal to Kx, Γxy = Kx∩Ky, nxy = nx|Γxy
and y ∼ x

means that y is a neighbor of x, y 6= x.

We approximate
∫

Γxy

π∇
( p
π

)
nxy dσ by

|Γxy|
|x− y|θ(π̃(x), π̃(y))

(
p̃(y)

π̃(y)
− p̃(x)

π̃(x)

)

(this approximation is inspired from [13] and was used in [1] for the 1-dimensional

case) and we get the final form of the semi-discretized equation:

d

dt
p̃(x) =

∑

y∼x

|Γx,y|
|x− y|θ(π̃(x), π̃(y))

(
p̃(y)

π̃(y)
− p̃(x)

π̃(x)

)

Or equivalently:

d

dt
p̃(x) =

∑

y∼x

( |Γxy|
|x− y|θ(π̃(x), π̃(y))

p̃(y)

π̃(y)

)

−
(
∑

y∼x

|Γxy |
|x− y|θ(π̃(x), π̃(y))

)
p̃(x)

π̃(x)
(14)
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which can be seen as an evolution equation on the network N .

Semi-discretized equation written with probability densities:

An equivalent semi-discretized equation of (14) is written with the probability

densities ρ̃ with respect to π̃, i.e. ρ̃(x) = p̃(x)π̃(x):

d

dt
ρ̃(x) =

∑

y∼x

(
|Γxy|

|x− y| π̃(x)
θ(π̃(x), π̃(y))ρ̃(y)

)

−
(
∑

y∼x

|Γxy|
|x− y| π̃(x)

θ(π̃(x), π̃(y))

)
ρ̃(x). (15)

Now, equation (15) can be written

d

dt
ρ̃ = Qρ̃, (16)

with

Q(x, y) =





|Γxy|θ(π̃(x), π̃(y))

|x− y| π̃(x)
, if x ∼ y

−
∑

y∼x

|Γxy|θ(π̃(x), π̃(y))

|x− y| π̃(x)
, if x = y

0 otherwise

on the network N .

Equation (16) is not exactly of the heat flow type (11), since Q is not of the

form K − I, where K would be a stochastic matrix. Yet, as pointed out in [14],

a connection can be made between the two settings: For a matrix Q as above,

we set

qx =
∑

y∼x

Q(x, y) and qmax = maxxqx.

We then define the matrix K as follows:

K(x, y) =





Q(x, y)

qmax
, if x 6= y

qmax − qx
qmax

, if x = y

Proposition 3.1. The matrix K resulting from the space discretization of the

FP equation (13) as described above is an irreducible and reversible Markov

Kernel that admits π̃ as stationary measure.

Proof. The matrix K has the following properties:



16 F. Al Reda and B. Maury

(i) K(x, y) = Q(x, y)/qmax ≥ 0 for x 6= y, K(x, x) = (qmax − qx)/qmax ≥ 0, and

∑

y∈V

K(x, y) =
∑

y∼x

Q(x, y)

qmax
+
qmax − qx
qmax

=
∑

y∼x

Q(x, y)

qmax
+ 1 −

∑

y∼x

Q(x, y)

qmax
= 1.

(ii) K(x, y) 6= 0 for x ∼ y and the network is strongly connected, we deduce

that K is irreducible and then has a unique stationary measure.

(iii) π̃ satisfies the detailed balance equation for all x, y ∈ V :

π̃(x)K(x, y) = π̃(x)
Q(x, y)

qmax
=
π̃(x)

qmax

|Γxy |θ(π̃(x), π̃(y))

|x− y| π̃(x)

=
π̃(y)

qmax

|Γxy |θ(π̃(x), π̃(y))

|x− y| π̃(y)
= π̃(y)

Q(y, x)

qmax
= π̃(y)K(y, x)

so K is reversible, and we have:

∑

y∈V

π̃(y)K(y, x) =
∑

y∈V

π̃(x)K(x, y) = π̃(x)

which proves that π̃ is the unique stationary measure of K.

By definition of K, we have that

1

qmax
Q = (K − I),

so that the solution to (16), that is the space-discretized solution, is the solution

to the heat flow equation

d

dt
ρ̃+ (I −K)ρ̃ = 0,

up to an affine time renormalization.

Now recall that the continuous FP equation is the gradient flow in the

Wasserstein sense (see Def(2.1)) for the relative entropy (7). We have the fol-

lowing discrete counterpart of this property for the Finite Volume discretization

scheme (16), that is a direct consequence of the previous developments:

Proposition 3.2. The space discretized scheme (16) is a gradient flow for the

discrete relative entropy (2), up to an affine time renormalization, with respect

to the discrete Wasserstein distance W̃2 (see Def 2.4).
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4 Conclusives remarks, perspectives

We described in this paper how some space discretization Finite Volume schemes,

possibly on unstructured meshes, can be proved to be deeply respectfull of the

underlying gradient flow structure. Given a PDE that is the Wasserstein gradi-

ent flow of some functionnal, the ODE resulting from space discretization can

be identified as a gradient flow for a discrete functionnal that is an approxima-

tion of the continuous one, in the Wasserstein space of measures defined on the

underlying network, the vertices of which are the finite volume cells. This overall

consistency with respect to Wasserstein metric, that is expressed by Fig. 1, can

be used to improve the numerical analysis of a scheme, e.g. by charaterizing its

long-time behaviour (as in [2] in the case of a cartesian mesh). Note that the

approach is currently limited to the semi-discretized scheme. Let us add that the

considered scheme treats the advection in a diffusive manner, and as such it is

intrinsically of the centered type, so that stability issues can be expected. In par-

ticular, an Euler Explicit scheme is likely to lead to unconditionnal unstability.

Implicit time-stepping may, in the contrary, provide some stability. Note that

Implicit Euler time-stepping applied to (16) leads to a problem that is formally

very similar to the so-called JKO scheme applied at the discrete level to compute

the gradient flow. Implicit schemes are then likely to recover some properties of

the JKO one .

Let us finally stress that the diagram of Fig. 1 is not fully realized. In-

deed, the arrow 2 between blocks B and B′, which expresses a link between the

Wasserstein distance in a domain, and the discrete Wasserstein distance on the

network obtained by space discretization, is not covered by a full theory. The

only known convergence results ([11]) concern cartesian grids, in the case without

potential. In the presence of a non-constant potential, the framework that has

been presented may appear puzzling, because the discrete Wasserstein distance

involves the stationnary measure (non uniform in general), which depends on

the potential Φ, whereas its continuous counterpart pertains to the flat domain,

and therefore does not depend on Φ. This apparent paradox is due to the fact

that, at the discrete level, the distance W̃2 is defined for densities with respect to

the stationary measure π̃. Comparing both distances would amount to consider

two probabilties p0 and p1, compute their discrete counterparts p̃0 and p̃1, to-

gether with π̃, then ρ̃0 = p̃0/π̃, ρ̃1 = p̃1/π̃, and finally estimate W̃2(ρ̃0, ρ̃1), and

check that the latter converges to W2(p0, p1) when the discretization is refined.

Although not covered by any theoretical result, and in spite of the fact that W̃2

“sees” the measure π, while W2 does not, such a property can be expected, be-

cause π is involved twice in the discretization process : firstly by computation of
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ρ̃ from p̃, and then, in a hidden way, through the definition of W̃2. One can check

in very simple situations that both effect tend to compensate each other, i.e. the

dependence of W̃2(ρ̃0, ρ̃1) upon π asymptotically vanishes. It can also be seen

in the very definition of the distance itself: each time π̃(x) is involved, it is mul-

tiplied by a quantity of the type θ(ρ̃(x), ρ̃(y)), where x and y are connected. In

the context of Finite Volume schemes, when the discretization is refined, x and

y get closer, so that this quantity is asymptotically close to ρ̃(x), and finally the

real dependence is upon p̃(x), which does no longer depend on the stationnary

measure. As for non cartesian meshes, the analogy that we established advocate

for a convergence of the discrete Wasserstein metric toward the continuous one,

but it remains to be rigorously proven.
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