Jump filtering and efficient drift estimation for lévy-driven sde's - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Jump filtering and efficient drift estimation for lévy-driven sde's

Résumé

The problem of drift estimation for the solution $X$ of a stochastic differential equation with L\'evy-type jumps is considered under discrete high-frequency observations with a growing observation window. An efficient and asymptotically normal estimator for the drift parameter is constructed under minimal conditions on the jump behavior and the sampling scheme. In the case of a bounded jump measure density these conditions reduce to $n\Delta_n^{3-\eps}\to 0,$ where $n$ is the number of observations and $\Delta_n$ is the maximal sampling step. This result relaxes the condition $n\Delta_n^2 \to 0$ usually required for joint estimation of drift and diffusion coefficient for SDE's with jumps. The main challenge in this estimation problem stems from the appearance of the unobserved continuous part $X^c$ in the likelihood function. In order to construct the drift estimator we recover this continuous part from discrete observations. More precisely, we estimate, in a nonparametric way, stochastic integrals with respect to $X^c$. Convergence results of independent interest are proved for these nonparametric estimators. Finally, we illustrate the behavior of our drift estimator for a number of popular L\'evy--driven models from finance.
Fichier principal
Vignette du fichier
GLMrevisedv6main.pdf (637.18 Ko) Télécharger le fichier
GLMrevisedv6supplement.pdf (521.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01287823 , version 1 (14-03-2016)
hal-01287823 , version 2 (17-03-2016)
hal-01287823 , version 3 (24-02-2017)

Identifiants

  • HAL Id : hal-01287823 , version 3

Citer

Arnaud Gloter, Dasha Loukianova, Hilmar Mai. Jump filtering and efficient drift estimation for lévy-driven sde's. 2016. ⟨hal-01287823v3⟩
582 Consultations
580 Téléchargements

Partager

More