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7. Examples and numerical results. In this section we consider concrete applica-
tions of the drift estimator in popular jump diffusion models and investigate the numerical
performance in finite sample studies. We consider both examples with finite and infinite
jump activity.

In the first part, we give explicit drift estimator for Ornstein-Uhlenbeck and Hyperbolic
diffusion and study numerically the performance of the estimator for a finite activity jump
process. In the second part, we consider the case of infinite activity jump process, as the
Lévy process is chosen to be a stable process.

We consider here for convenience only linear models in the drift parameter that lead
to explicit maximum likelihood estimators in order to avoid the need for numerical maxi-
mization techniques. Note that the method developed in this work applies equally well to
non-linear models by using standard maximization methods on the discretized and jump-
filtered likelihood function (3.4).

7.1. Finite activity. In this section we consider two different jump diffusion models with
finite activity jumps. The first model will consist of Ornstein-Uhlenbeck-type processes that
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recently became popular in financial modeling (cf. for example [1]), and the second model
will be a ’Hyperbolic diffusion’.

The jump process L is of compound Poisson type in the case of finite activity such that
it can be written as

(7.1) Lt =

Nt∑
i=1

Zi, for t ≥ 0,

where (Nt)t≥0 is a Poisson process with intensity λ and (Zi)i∈N are i.i.d. real random
variables independent of N , with distribution ν/λ.

7.1.1. Ornstein-Uhlenbeck-type processes. Suppose that we have given a discrete sample

(7.2) Xt0 , . . . , Xtn for ti = i∆n and i = 0, . . . , n,

of an Ornstein-Uhlenbeck-type (OU) process (Xt)t≥0 that is defined as a solution of the
stochastic differential equation

(7.3) dXt = (θ2 − θ1Xt) dt+ σ dWt + dLt X0 = x,

where (Wt)t≥0 is a standard Brownian motion and (Lt)t≥0 a pure jump Lévy process. Our
goal is to estimate the unknown drift parameter θ = (θ1, θ2) ∈ R2. The volatility parameter
σ > 0 might be unknown and can be seen as a nuisance parameter. The jump component
(Lt)t≥0 will be of compound Poisson type, i.e. it can be written as in (7.1) with intensity λ
and the jump heights Zi are supposed to be i.i.d. with Gaussian distribution N (0, 1).

From (3.4) and (3.5) we find that the FMLE for θ is the solution θ̂OU
n = (θ̂OU

1,n , θ̂
OU
2,n ) to

the following set of linear equations in θ1 and θ2.

θ1 =
θ2In(X, 1)−

∑n
i=1Xti−1∆n

i X1|∆n
i X|≤vin

In(X, 2)
,

θ2 =

∑n
i=1 ∆n

i X1|∆n
i X|≤vin + θ1In(X, 1)

tn
,(7.4)

where we introduced the functional

(7.5) In(X, p) :=

n∑
i=1

Xp
ti−1

∆n
i Id for p ∈ R.

The FLME for the first component of θ results in

θ̂OU
1,n =

(
1− In(X, 1)2

tnIn(X, 2)

)−1 In(X, 1)
∑n

i=1 ∆n
i X1|∆n

i X|≤vin − tn
∑n

i=1Xti−1∆n
i X1|∆n

i X|≤vin
tnIn(X, 2)

.

The second component θ̂OU
2,n follows now easily by plugging θ̂OU

1,n into (7.4).
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We give simulation results for θ̂OU
1,n in the situation where θ2 = 0. The given mean and

standard deviation are each based on 5000 Monte Carlo samples of θ̂OU
1,n . We also give the

average number of jumps that were detected by the jump filter.
We choose vn = ∆

1/2−ε
n = ∆0.49

n and consider first the choice of constant weights ain = 5
(recall (3.3)). The results of the simulations are given in columns 3–5 of Table 1 for σ = 1.
It appears that the estimator performs well as soon as the discretization distance ∆n is
sufficiently small. On the other hand, in the case where σ = 3, the same estimator appears
almost useless due to a large bias even for small ∆n (see columns 3–4 of Table 2). This
comes from the fact that many increments of the Brownian part σ(Wti −Wti−1) are larger
than the threshold vin = 5 ×∆0.49

n in the situation σ = 3. Hence, it is important for finite
sample properties of the estimator to take into account the volatility of Xc for the choice of
the jump threshold. As it is better that the estimator does not depend on the knowledge of
the value of σ, we introduce the threshold vin = 5× σ̂in×∆0.49

n , where (σ̂in)2 is an estimation
of the quadratic variation of the process on K = 30 past observations,

(7.6) (σ̂in)2 =
1

∆nK

K∑
l=1

(
∆n
i−lX

)2
and for convenience we set (σ̂in)2 = (σ̂K+1

n )2 for 1 ≤ i ≤ K. The estimation of σ by σ̂in might
be upward biased if a jump occurs on (ti−K , ti−1]. However, as the jumps of the process are
isolated, it is asymptotically unlikely that a jump has to be filtered in the interval (ti−1, ti]
while the estimation of the volatility on the (ti−K , ti−1] is biased by another jump. We see
in columns 6–8 of Tables 1–2, that with this choice, the estimator performs now well, for
both values of σ.

Let us remark that the number of filtered jumps is much smaller than the true expected
number of jumps (see column 5 of Table 1 and column 8 of Table 1–2). Since, the aim is to
estimate the drift parameter, and not the number of jumps, this strong bias is unimportant
here. However the number of jump is the main quantity used to estimate the jump intensity
and is thus a relevant quantity in many context. For instance, in [5] the author exhibit an
asymptotic expansion for the bias when estimating the intensity from the number of jumps,
and proposes to calibrate the threshold by some minimization of this bias.

As the number of ’filtered jumps’ is a decreasing function of the threshold, it is possi-
ble to find the threshold vni = a(∆n)0.49, a > 0, such as the average number of ’filtered
jumps’ is equal to the expected number of jumps λtn. In Table 3 we report the values of a,
numerically obtained by successive guesses, and show how the estimator behaves with this
threshold. It appears that the estimator has a higher bias than when the number of jumps
was underestimated. Hence, it seems preferable, in some situations, to filter less jumps than
the true number of jumps.

7.1.2. Hyperbolic diffusions with jumps. In this section we apply the drift estimator to
hyperbolic diffusion processes with jumps. They are defined as solutions (Xt)t≥0 of the
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ain = 5 ain = 5 × σ̂in

tn n mean std dev jumps filt mean std dev jumps filt

10 100 1.84 0.47 1.23 1.90 0.52 0.43
400 2.00 0.45 4.16 2.05 0.52 3.04
1000 2.06 0.45 5.98 2.08 0.49 5.28

50 500 1.77 0.22 6.19 1.80 0.24 3.00
2000 1.95 0.20 20.8 1.95 0.23 16.3
5000 1.99 0.20 30.0 2.00 0.22 27.0

100 3000 1.91 0.14 34.9 1.93 0.17 25.9
104 1.98 0.14 60.1 1.98 0.16 54.0

3 × 104 2.00 0.14 76.2 2.00 0.15 73.3

Table 1
Monte Carlo estimates of mean and standard deviation from 5000 samples of θ̂OU

1,n for an OU process with
compound Poisson jumps with intensity λ = 1, σ = 1 and true parameter θ1 = 2.

ain = 5 ain = 5 × σ̂in

tn n mean std dev jumps filt mean std dev jumps filt

10 100 1.33 0.51 9.16 1.94 0.59 8.4 × 10−3

400 1.41 0.53 35.8 2.10 0.64 0.27
1000 1.44 0.54 85.0 2.14 0.65 1.31

50 500 1.26 0.23 45.4 1.80 0.24 0.06
2000 1.33 0.30 180 1.98 0.28 1.53
5000 1.35 0.23 425.0 2.01 0.28 6.63

100 3000 1.30 0.16 273 1.95 0.19 0.11
104 1.34 0.17 850 1.99 0.19 13.2

3 × 104 1.36 0.16 2386 2.01 0.19 36.4

Table 2
Monte Carlo estimates of mean and standard deviation from 5000 samples of θ̂OU

1,n for an OU process with
compound Poisson jumps with intensity λ = 1, σ = 3 and true parameter θ1 = 2.

vin = a∆0.49
n

tn n a mean std dev jumps filt

10 400 2.551 1.88 0.41 10.0
50 5000 2.897 1.94 0.19 50.0
100 104 2.9 1.93 0.14 100

Table 3
Monte Carlo estimates of mean and standard deviation from 5000 samples of θ̂OU

1,n for an OU process with
compound Poisson jumps with intensity λ = 1, σ = 1, true parameter θ1 = 2, and with threshold such as

the estimated number of jumps is unbiased.
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ain = 5 ain = 5 × σ̂in

tn n mean std dev jumps filt mean std dev jumps filt

10 100 1.06 0.61 1.22 1.12 0.67 0.42
400 1.10 0.57 4.10 1.11 0.62 3.04
1000 1.12 0.56 5.95 1.12 0.56 5.31

50 500 0.97 0.26 6.18 0.93 0.27 2.86
2000 1.01 0.23 20.8 1.01 0.24 16.1
5000 1.02 0.22 30.0 1.02 0.23 27.0

100 3000 0.99 0.16 35.0 0.99 0.17 25.7
104 1.01 0.15 60.0 1.01 0.16 54.0

3 × 104 1.01 0.15 75.6 1.01 0.15 73.1

Table 4
Monte Carlo estimates of mean and standard deviation from 5000 samples of θ̂hyp1,n for an Hyperbolic

process with compound Poisson jumps with intensity λ = 1, σ = 1 and true parameter θ1 = 1.

following SDE:

dXt = − θXt

(1 +X2
t )1/2

dt+ σ dWt + dLt, X0 = x.

Here, the drift parameter θ > 0 and the diffusion coefficient σ > 0 are unknown and we aim
at estimating θ form discrete observations Xt0 , . . . , Xtn of X, where ti = i∆n for ∆n > 0
and i = 0, . . . , n. The driving Lévy process (Lt)t≥0 is again a Compound Poisson Process
with intensity λ and the jump heights Zi are supposed to be i.i.d. with Gaussian distribution
N (0, 1). From (3.4) we obtain an explicit expression for the estimator,

θ̂hyp
n = −

n∑
i=1

Xti−1

(1 +X2
ti−1

)1/2
∆n
i X1|∆n

i X|≤vn

(
n∑
i=1

X2
ti−1

∆n
i Id

(1 +X2
ti−1

)

)−1

.

The Hyperbolic model has a less mean reverting drift than the Ornstein Ulhenbeck model.
However, the simulation results are close to the one obtained from the O.U. model (see
Table 4).

7.2. Infinite activity. In this section we investigate estimation of the drift when the
driving Lévy process is of infinite jump activity. This is of course a more challenging problem
with regards to the approximation of the continuous martingale part i.e. the jump filtering
problem, since we have to distinguish a diffusion component from a process that jumps
infinitely often in finite time intervals.

We consider again the O.U. model (7.3), with θ2 = 0, and where the driving Lévy
process (Lt)t≥0 is an α-stable process such that E[eiuL1 ] = e−|u|

α . It is known that its
Lévy-Khintchine triplet is (0, 0, ν), with a Lévy measure of the form ν(dx) = καdx/|x|1+α,
for some constant κα > 0. In Table 5 we show the estimation results for σ = 1 and
α = 0.9. We see that the estimator based on the threshold vin = 5×∆0.49

n has a serious bias
which decay slowly as ∆n → 0 (see columns 3–5 in table 5). The estimator with threshold
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ain = 5 ain = 5 × σ̂in ain = 5 × σ̃in

tn n mean std dev j filt mean std dev j filt mean std dev j filt

10 100 1.62 0.41 8.32 1.85 0.44 1.42 1.79 0.35 2.46
400 1.88 0.30 13.2 2.00 0.46 4.80 1.95 0.29 6.85
1000 1.97 0.26 12.7 2.04 0.43 8.85 1.99 0.29 11.5

50 500 1.60 0.19 42.2 1.81 0.17 8.61 1.79 0.12 13.8
2000 1.82 0.097 66.9 1.96 0.20 25.0 1.94 0.084 34.5
5000 1.93 0.081 63.7 1.99 0.18 45 1.97 0.084 57.5

100 3000 1.78 0.080 128 1.94 0.13 41.1 1.92 0.059 58.3
104 1.93 0.053 128 1.98 0.12 90.1 1.97 0.059 114

3 × 104 1.98 0.082 192 1.99 0.11 166 1.98 0.084 201

Table 5
Monte Carlo estimates of mean and standard deviation from 5000 samples of θ̂OU

1,n for an OU process with
α-stable jumps, α = 0.9, σ = 1, and true parameter θ1 = 2.

ain = 5 ain = 5 × σ̂in ain = 5 × σ̃in

tn n mean std dev j filt mean std dev j filt mean std dev j filt

10 100 1.36 0.57 24.5 1.81 0.41 2.0 1.78 0.27 3.47
400 1.65 0.46 60.7 1.96 0.84 5.28 1.94 0.17 7.76
1000 1.82 0.29 85.8 2.00 0.38 8.11 1.98 0.13 10.7

50 500 1.36 0.46 131 1.82 0.15 11.1 1.81 0.094 19.0
2000 1.69 0.30 317 1.96 0.18 26.7 1.94 0.034 38.9
5000 1.81 0.17 447 1.99 0.14 40.6 1.98 0.029 53.4

100 3000 1.64 0.32 266 1.94 0.11 46.1 1.93 0.031 68.9
104 1.82 0.15 892 1.98 0.16 81.4 1.98 0.017 107

3 × 104 1.89 0.082 797 1.99 0.074 121 1.99 0.013 140

Table 6
Monte Carlo estimates of mean and standard deviation from 5000 samples of θ̂OU

1,n for an OU process with
α-stable jumps, α = 0.5, σ = 1, and true parameter θ1 = 2.

depending on local estimation of the quadratic variation (7.6) presents a much reduced bias,
with a slightly higher standard deviation (see columns 6–8 in table 5). In Table 6 we show
the results for α = 0.5, and the situation is rather similar to α = 0.9.

Inspecting the behaviour of the estimator, we realized that σ̂in tends to overestimate σ
due to the presence of the infinite number of jumps of the stable process, and may take
large values. We propose to reduce the contribution of the stable process in the estimation of
the local volatility by removing in the sum (7.6) the contribution of the biggest increment
maxl∈{i−K,...,i−1} |∆n

l X|2. This tends to suppress the contribution of the largest jump of
the stable process and considerably reduces the upward bias for the estimation of the local
volatility. We note σ̃in this correction of the quantity σ̂in and show in the last three columns
of Tables 5–6 the behavior of the corresponding estimator. It appears that this estimator
works well, with a small bias and a much reduced standard deviation.
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8. Proofs of auxiliary results. In this section we give the proofs of several results
stated and used in Sections 2, 5 and 6 of the paper. We end the section by proving that the
Assumption 6 may be rewritten in a simpler form.

First, we give the proof of the ergodicity results and moment bounds of Lemma 2.1. The
proof is based on [3].

8.1. Proof of Lemma 2.1. Denote

Gf(x) =
1

2
σ2(x)f ′′(x) + b(θ, x)f ′(x),

J f(x) =

ˆ
R

(f(x+ zγ(x))− f(x))ν(dz),

for any f such that the two previous expressions are defined and set

A = G + J .

Let q > 2, q even and f?(x) = |x|q. We show that f? satisfies the drift condition

Af? ≤ −c1f
? + c2,

where c1 > 0, c2 > 0.
Using Taylor’s formula together with Assumptions 3 (i), (iii) and 4 we can write

|J f?(x)| ≤
ˆ
R
|zγ(x)| sup

u∈[x,x+zγ(x)]
|f?′(u)|ν(dz) ≤ C|γ(x)||x|q−1

ˆ
R
|z|(1+|z|)q−1ν(dz) = o(|x|q)

as x→∞. Using Assumption 3 (ii) and (iv) we get

Gf?(x) =
1

2
σ2(x)q(q−1)xq−2+b(θ, x)xqxq−2 ≤ −C|x|2qxq−2+o(|x|q) ≤ −Cqf?(x)+o(|x|q),

for some C > 0. As Af?(x) is locally bounded, using two previous displays we can choose
c2 > 0 and c1 > 0 such that for all x ∈ R,

Af?(x) ≤ −c1f
?(x) + c2.

Hence, Assumption 3? from [3] holds and using Theorem 2.2 from [3] we get then

(8.1) sup
s≥0

E[|Xθ
s |q] <∞

and using Fatou’s lemma results in

sup
s≥0

E[|Xθ
s− |

q] <∞.
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Hence we proved the assertion (3). Using Assumption 2 and the Theorem 2.1 from [3] we
get for all θ ∈ Θ that Xθ admits the unique invariant distribution πθ, f? ∈ L1(πθ) and the
ergodic theorem holds. We proved (1) and (2). We continue with the proof of (4). Using
ergodic theorem, for all q > 0,

lim
t→∞

1

t

ˆ t

0
|Xθ

s |qds = πθ(|x|q), P − a.s.

Moreover, using Jensen’s inequality and the bound (8.1) we get the uniform integrability
of the family {1

t

´ t
0 |X

θ
s |qds, t > 0}:

E

(
1

t

ˆ t

0
|Xθ

s |qds
)1+ε

≤ 1

t

ˆ t

0
[E|Xθ

s |q(1+ε)]ds ≤ C,

where C > 0, and hence

lim
t→∞

1

t

ˆ t

0
E|Xθ

s |qds = πθ(|x|q).

8.2. Proof of Theorem 5.3. From (3.1)–(3.2),

`t(θ
? +

h√
t
)− `t(θ?) = −1

2

ˆ t

0

(b(θ? + h√
t
, Xs)− b(θ?, Xs))

2ds

σ2(Xs)

+

ˆ t

0

(b(θ? + h√
t
, Xs)− b(θ?, Xs))

σ(Xs)
dWs

= −1

2

ˆ 1

0

ˆ 1

0

1

t

ˆ t

0

h>(∇b(θ? + hu√
t
, Xs)∇b>(θ? + hu′√

t
, Xs)h

σ2(Xs)
ds

 dudu′

+
1√
t

ˆ t

0

∇bT (θ?, Xs)h

σ(Xs)
dWs +Rt

where

Rt :=

ˆ t

0

(b(θ? + h√
t
, Xs)− b(θ?, Xs))

σ(Xs)
dWs −

1√
t

ˆ t

0

∇bT (θ?, Xs)h

σ(Xs)
dWs.

Using Assumption 5, 7, 8 and Lemma 2.1, for all fixed r > 0, r′ > 0 such that θ? + r ∈ Θ,
θ? + r′ ∈ Θ we obtain

lim
t→∞

1

t

ˆ t

0

h>∇b(θ? + r,Xs)∇b>(θ? + r′, Xs)h

σ2(Xs)
ds =

ˆ
R

h>∇b(θ? + r, x)∇b>(θ? + r′, x)h

σ2(x)
dπ(x)



9

P -a.s. and see that this last limit is finite. Moreover, with Assumption 5, 7, 8 and Lemma
2.1 it can be shown that this convergence is uniform with respect to r and r′. Hence for
hu/
√
t→ 0, hu′/

√
t→ 0, it gives that P − a.s.

(8.2) lim
t→∞

ˆ 1

0
du

ˆ 1

0
du′

1

t

ˆ t

0

h>∇b(θ? + hu√
t
, Xs)∇b>(θ? + hu′√

t
, Xs)h

σ2(Xs)
ds

=

ˆ
R

h>∇b(θ?, x)∇b>(θ?, x)h

σ2(Xs)
dπ(x) = h>I(θ?)h.

Using Markov inequality

(8.3) P (|Rt| ≥ ε) ≤
V arRt
ε2

≤ ‖h‖
2

ε2

1

t

ˆ t

0

(
‖h‖√
t

)2κ

E

(
K2

1 (Xs)

σ2(Xs)

)
ds,

where K1 is a Holder constant of ∇b and is supposed to be at most of polynomial growth.
Using ergodic theorem in mean, we obtain Rt → 0 in P probability.

Due to the CLT for martingales in [2]

1√
t

ˆ t

0

∇b>(θ?, Xs)h

σ(Xs)
dWs → N (0, h>I(θ?)h)

in distribution. Combining the latter equation with (8.2)–(8.3), we obtain (5.14). This
implies together with Theorem 5.2 that θ̄t is asymptotically efficient in the sense of the
Hájek-Le Cam convolution theorem.

8.3. Proof of Lemma 6.1. The first claim follows easily from the two lemmas and theo-
rem 66 on p. 339 in [4] together with the fact that sups≥0E[|Xs|p] < ∞, for all p ≥ 1, by
Lemma 2.1. The second claim follows from proposition 3.1 in [6]. The third claim follows
easily from Burkolder’s Inequality (see [4] p.222) and Lemma 2.1 again.

8.4. Proof of Lemma 6.3. We need to introduce some notations. For z > 0, we define
Uz =

´ ti
ti−1

´
|y|≥1/z µ(ds, dy) the number of jumps of (Ls), s ∈ (ti−1, ti], with a size greater

than 1/z, and we set U0 = 0. It is clear that (Uz)z≥0 is a process whose increments are
independent and distributed with Poisson laws. Hence, it is a Poisson process, and by
a simple computation we can show that it has a jump intensity equal to U(z) := (ti −
ti−1)z−2(ν(z−1) + ν(−z−1)), where ν(z) = ν(dz)/dz exists by Assumption 4 (iii).

We define the filtration generated by the process (Uz)z≥0, by setting for all z ≥ 0,
Gz = σ{Uy; y ≤ z}. We note Z∗1 the first jump time of the process U , which is a stopping
time. By construction, we have that 1/Z∗1 is the size of the biggest jumps of the Lévy
process L on (ti−1, ti], or with the notations of Lemma 4.2 that, 1/Z∗1 = |∆LT ∗i |, where
|∆LT ∗i | = max {|∆Ls|; s ∈ (ti−1; ti]}.
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Moreover, we can write∑
ti−1<s≤ti;s 6=T ∗i

|∆Ls| =
ˆ ti

ti−1

ˆ
|y|<1/Z∗1

|y|µ(ds, dy) =

ˆ
(Z∗1 ,∞)

1

z
dUz,

where we have used that ∆LT ∗i is the only jump with the maximal size 1/Z∗1 . Hence, we
have

P ((N i
n)
c ∩ (Ain)c) = P

|∆LT ∗i | > 3vin
γmin

;
∑

ti−1<s≤ti;s 6=T ∗i

|∆Ls| >
vin
γmax


= P

(
(Z∗1 )−1 >

3vin
γmin

;

ˆ
(Z∗1 ,∞)

z−1dUz >
vin
γmax

)

≤ P

(
(Z∗1 )−1 >

3avn
γmin

;

ˆ
(Z∗1 ,∞)

z−1dUz >
avn
γmax

)

= E

[
1{(Z∗1 )−1> 3avn

γmin
}P

(ˆ
(Z∗1 ,∞)

z−1dUz >
avn
γmax

| GZ∗1

)]

≤ γmax
avn

E

[
1{(Z∗1 )−1> 3avn

γmin
}E

(ˆ
(Z∗1 ,∞)

z−1dUz | GZ∗1

)]
,

where we have used the Markov inequality in the last line. Using now that (Uz)z≥0 is a
Poisson process with an explicit jump intensity U(z) = (ti − ti−1)z−2(ν(z−1) + ν(−z−1)),
we deduce,

P ((N i
n)
c ∩ (Ain)c) ≤ γmax

avn
E

[
1{(Z∗1 )−1> 3avn

γmin
}E

(ˆ
(Z∗1 ,∞)

z−1U(z)dz | GZ∗1

)]
.

But, by a simple change of variable,
´

(Z∗1 ,∞) z
−1U(z)dz = (ti − ti−1)

´
|y|<1/Z∗1

|y|ν(y)dy ≤
∆n

´
R |y|ν(y)dy. We conclude

P ((N i
n)
c ∩ (Ain)c) ≤ γmax

avn
∆n

(ˆ
R
|y|ν(y)dy

)
P

[
(Z∗1 )−1 >

3avn
γmin

]
≤ C ∆n

avn
P

(
µ((ti−1, ti]× [(−∞,−3avn

γmin
) ∪ (

3avn
γmin

,+∞)]) ≥ 1

)
≤ C ∆2

n

avn

ˆ
|z|> 3avn

γmin

ν(dz),

where C > 0. The lemma is proved.
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8.5. Proof of Lemma 6.4. We use the notations introduced in Section 6 and denote the
event Ãin = { L has at most one jump on (ti−1, ti] }, which is well defined since the jump
intensity of L is finite under Assumption 4 (ii’). Then

Ki
n ∩ (N i

n)c ∩ Ãin ⊂
{
|∆n

i X| ≤ vin
}
∩
{
|∆n

i X
J | ≥ 3vin

}
⊂
{
|∆n

i X
c| ≥ vin

}
,

and by Remark 2 we deduce P (Ki
n ∩ (N i

n)c ∩ Ãin) = O(∆2
n).

Since the process L has a finite jump activity, it is easy to see that P ((Ãin)c) = O(∆2
n).

This implies that P (Ki
n ∩ (N i

n)c) = O(∆2
n).

Let us now control E[supθ∈Θ |B1
n(θ)|]. Recall the expression of B1

n(θ),

B1
n(θ) = −

n∑
i=1

f(θ,Xti−1)
(
∆n
i X

J
)

1Ki
n∩(N i

n)c

= −
n∑
i=1

f(θ,Xti−1)
(

∆n
i X

c −∆n
i 1|∆n

i X|≤vin

)
1Ki

n∩(N i
n)c .

By the Hölder inequality, the L1 norm of supθ∈Θ |B1
n(θ)| is upper bounded by

E sup
θ∈Θ
|
n∑
i=1

f(θ,Xti−1)
(

∆n
i X

c −∆n
i X1|∆n

i X|≤vin

)
1Ki

n∩(N i
n)c |

≤
n∑
i=1

(
E sup
θ∈Θ
|f(θ,Xti−1)|p(|∆n

i X
c|+ vin)p

)1/p (
P (Ki

n ∩ (N i
n)
c
)
)1/q

,

for 1/p+ 1/q = 1. Using Lemma 2.1 (3) and choosing 1/q = 1− ε/2, we deduce

E[sup
θ∈Θ
|B1

n(θ)|] = O(nvn∆2−ε
n ) = O(n∆2

n).

8.6. Equivalent form of the identifiability Assumption 6.

Proposition 8.1. Under Assumptions 1 to 4, the Assumption 6 is equivalent to the
condition

∀(θ, θ′) ∈ Θ2, such that θ 6= θ′, b(θ, .) 6= b(θ′, .).

Proof. It is sufficient to prove that if b(θ, .) 6= b(θ′, .) then
´
R

(b(θ,x)−b(θ′,x))2

σ2(x)
dπθ(x) > 0.

But if b(θ, .) 6= b(θ′, .), the continuous function x 7→ (b(θ, x) − b(θ′, x))2/σ2(x) does not
vanish on some non empty open set O. It remains to show that πθ(O) > 0. It is proved
in [3] (see equation (13) p.43) that for all ∆ > 0, x ∈ R, and O non empty, open set,
P (Xθ

∆ ∈ O | Xθ
0 = x) > 0. From this, we deduce that

πθ(O) =

ˆ
R
P (Xθ

∆ ∈ O | Xθ
0 = x)dπθ(x) > 0.
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