Semi-parametric Markov Tree for cell lineage analysis - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Semi-parametric Markov Tree for cell lineage analysis

Résumé

An enlarged family of hidden Markov out-tree models is introduced. Unlike state-of-the-art hidden Markov out-tree models, in these models child vertices are not independent given their parent vertex, and the number of children per parent is random. The upward-downward smoothing algorithm, which in particular is used to implement efficiently the E-step in the EM algorithm, and the dynamic programming algorithm which is used to restore of the most probable state tree, are derived for this family of models. The advantage of such models is illustrated on cell lineages in floral meristems where non-parametric generation distributions are coupled with parametric observation models in order to define semi-parametric hidden Markov out-tree models.
Vignette du fichier
figure.jpg (450.79 Ko) Télécharger le fichier
Format Figure, Image
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01286298 , version 1 (11-03-2016)

Identifiants

  • HAL Id : hal-01286298 , version 1

Citer

Pierre Fernique, Jonathan Legrand, Jean-Baptiste Durand, Yann Guédon. Semi-parametric Markov Tree for cell lineage analysis. 2016. ⟨hal-01286298⟩
601 Consultations
78 Téléchargements

Partager

More