Melting and solidification of Bi nanoparticles in a germanate glass
Résumé
A very large melting-solidification hysteresis of Bi nanoparticles embedded in a bulk alkali germanate glass is reported. Heating and cooling cycles are reproducible and show reversible transitions. High resolution transmission electron microscopy reveals that the glass contains nanocrystals of elementary Bi which are a few tenths of a nanometre in size. Upon heating above the Bi melting temperature the glass transmission increases up to 10% with respect to the initial value, which is most likely related to Bi melting. Upon cooling this high transmission state remains up to temperatures as low as 436 K. This behaviour is confirmed by Raman spectroscopy measurements. This nanostructured glass with a high refractive index can be used in nonlinear optical applications as well as an optical thermo-sensor.