The down operator and expansions of near rectangular k-Schur functions
Résumé
We prove that the Lam-Shimozono ``down operator'' on the affine Weyl group induces a derivation of the affine Fomin-Stanley subalgebra of the affine nilCoxeter algebra. We use this to verify a conjecture of Berg, Bergeron, Pon and Zabrocki describing the expansion of k-Schur functions of ``near rectangles'' in the affine nilCoxeter algebra. Consequently, we obtain a combinatorial interpretation of the corresponding k-Littlewood–Richardson coefficients.
Nous montrons que l’opérateur ``down'', défini par Lam et Shimozono sur le groupe de Weyl affine, induit une dérivation de la sous-algèbre affine de Fomin-Stanley de l'algèbre affine de nilCoxeter. Nous employons cette dérivation pour vérifier une conjecture de Berg, Bergeron, Pon et Zabrocki sur l'expansion des k-fonctions de Schur indexées par les partitions qui sont ``presque rectangles''. Par conséquent, nous obtenons une interprétation combinatoire des k-coefficients de Littlewood–Richardson correspondants.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...