On singularity confinement for the pentagram map - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2012

On singularity confinement for the pentagram map

Résumé

The pentagram map, introduced by R. Schwartz, is a birational map on the configuration space of polygons in the projective plane. We study the singularities of the iterates of the pentagram map. We show that a ``typical'' singularity disappears after a finite number of iterations, a confinement phenomenon first discovered by Schwartz. We provide a method to bypass such a singular patch by directly constructing the first subsequent iterate that is well-defined on the singular locus under consideration. The key ingredient of this construction is the notion of a decorated (twisted) polygon, and the extension of the pentagram map to the corresponding decorated configuration space.
L'application pentagramme de R. Schwartz est une application birationnelle sur l'espace des polygones dans le plan projectif. Nous ètudions les singularitès des itèrations de l'application pentagramme. Nous montrons qu'une singularitè ``typique'' disparaî t après un nombre fini d'itèrations, un phènomène dècouvert par Schwartz. Nous fournissons une mèthode pour contourner une telle singularitè en construisant la première itèration qui est bien dèfinie. L'ingrèdient principal de cette construction est la notion d'un polygone dècorè et l'extension de l'application pentagramme á l'espace de configuration dècorè.
Fichier principal
Vignette du fichier
dmAR0136.pdf (458.59 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01283158 , version 1 (05-03-2016)

Identifiants

Citer

Max Glick. On singularity confinement for the pentagram map. 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), 2012, Nagoya, Japan. pp.397-408, ⟨10.46298/dmtcs.3049⟩. ⟨hal-01283158⟩

Collections

TDS-MACS
45 Consultations
539 Téléchargements

Altmetric

Partager

More