New light on Bergman complexes by decomposing matroid types
Résumé
Bergman complexes are polyhedral complexes associated to matroids. Faces of these complexes are certain matroids, called matroid types, too. In order to understand the structure of these faces we decompose matroid types into direct summands. Ardila/Klivans proved that the Bergman Complex of a matroid can be subdivided into the order complex of the proper part of its lattice of flats. Beyond that Feichtner/Sturmfels showed that the Bergman complex can even be subdivided to the even coarser nested set complex. We will give a much shorter and more general proof of this fact. Generalizing formulas proposed by Ardila/Klivans and Feichtner/Sturmfels for special cases, we present a decomposition into direct sums working for faces of any of these complexes. Additionally we show that it is the finest possible decomposition for faces of the Bergman complex.
Les complexes de Bergmann sont des complexes polyhedrales affectès à des matroides. Les faces de ces complexes sont des matroides pour leur part, on les appelle types de matroides. Pour pouvoir comprendre ces types de matroides nous les divisons en sommes directes. Ardila et Klivans ont prouvè que le complexe de Bergman dun matroide peut être subdivisè en le complexe dordre du propre treillis des flats. Au surplus, Feichtner/Sturmfels ont pu montrer que le complexe de Bergmann peut même être subdivisè en le nested set complexe qui est encore plus grossier. Nous y prèsenterons une preuve plus courte et plus gènèrale. Nous gènèraliserons des formules qui ont dèjà ètè rèdigèes pour des cas spèciaux par Ardila/Klivans. Ainsi, nous rèvèlerons une division des types de matroides en sommes directes qui est valable tous les complexes èvoquès. De plus, nous montrerons que cette division est la division la plus fine pour les faces du complexe de Bergmann.
Domaines
Mathématique discrète [cs.DM]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...