Flows on Simplicial Complexes
Abstract
Given a graph $G$, the number of nowhere-zero $\mathbb{Z}_q$-flows $\phi _G(q)$ is known to be a polynomial in $q$. We extend the definition of nowhere-zero $\mathbb{Z} _q$-flows to simplicial complexes $\Delta$ of dimension greater than one, and prove the polynomiality of the corresponding function $\phi_{\Delta}(q)$ for certain $q$ and certain subclasses of simplicial complexes.
Etant donné un graphe $G$, on est connu que le nombre de $\mathbb{Z}_q$-flots non-nuls $\phi _G(q)$ est un polynôme dans $q$. Nous étendons la définition de $\mathbb{Z} _q$-flots non-nuls pour inclure des complexes simpliciaux de dimension plus grande qu'un, et on montre que le nombre est aussi un polynôme de la fonction correspondante pour certain valeurs de $q$ et de certaines sous-classes de complexes simpliciaux.
Origin | Publisher files allowed on an open archive |
---|
Loading...