A generalization of the alcove model and its applications
Résumé
The alcove model of the first author and Postnikov describes highest weight crystals of semisimple Lie algebras. We present a generalization, called the quantum alcove model, and conjecture that it uniformly describes tensor products of column shape Kirillov-Reshetikhin crystals, for all untwisted affine types. We prove the conjecture in types $A$ and $C$. We also present evidence for the fact that a related statistic computes the energy function.
Le modèle des alcôves du premier auteur et Postnikov décrit les cristaux de plus haut poids des algèbres de Lie semi-simples. Nous présentons une généralisation, appelée le modèle des alcôves quantique, et nous conjecturons qu’il décrit dans une manière uniforme les produits tensoriels des cristaux de Kirillov-Reshetikhin de type colonne, pour toutes les types affines symétriques. Nous prouvons la conjecture dans les types $A$ et $C$. Nous fournissons aussi des preuves qu’une statistique associée donne la fonction d’énergie.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...