Interfacial electronic transport phenomena in single crystalline Fe-MgO-Fe thin barrier junctions
Abstract
Spin filtering effects in nano-pillars of Fe-MgO-Fe single crystalline magnetic tunnel junctions are explored with two different sample architectures and thin MgO barriers (thickness: 3-8 monolayers). The two architectures, with different growth and annealing conditions of the bottom electrode, allow tuning the quality of the bottom Fe/MgO interface. As a result, an interfacial resonance states (IRS) is observed or not depending on this interface quality. The IRS contribution, observed by spin polarized tunnel spectroscopy, is analyzed as a function of the MgO barrier thickness. Our experimental findings agree with theoretical predictions concerning the symmetry of the low energy (0.2 eV) interfacial resonance states: a mixture of Delta(1)-like and Delta(5)-like symmetries.