Temperature dependent nucleation, propagation, and annihilation of domain walls in all-perpendicular spin-valve nanopillars
Résumé
We present a study of the temperature dependence of the switching fields in Co/Ni-based perpendicularly magnetized spin-valves. While magnetization reversal of all-perpendicular Co/Ni spin valves at ambient temperatures is typically marked by a single sharp step change in resistance, low temperature measurements can reveal a series of resistance steps, consistent with non-uniform magnetization configurations. We propose a model that consists of domain nucleation, propagation, and annihilation to explain the temperature dependence of the switching fields. Interestingly, low temperature (<30 K) step changes in resistance that we associate with domain nucleation have a bimodal switching field and resistance step distribution, attributable to two competing nucleation pathways.