Single Approximation for Biobjective Max TSP - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Single Approximation for Biobjective Max TSP

Cristina Bazgan
  • Fonction : Auteur
Laurent Gourvès
  • Fonction : Auteur
Jérôme Monnot
Fanny Pascual
  • Fonction : Auteur
  • PersonId : 855950

Résumé

We propose an algorithm which returns a single Hamiltonian cycle with performance guarantee on both objectives. The algorithm is analysed in three cases. When both (resp. at least one) objective function(s) fulfill(s) the triangle inequality, the approximation ratio is $\frac{5}{12}-\varepsilon \approx 0.41$ (resp. $\frac{3}{8}-\varepsilon$). When the triangle inequality is not assumed on any objective function, the algorithm is $\frac{1+2\sqrt{2}}{14}-\varepsilon\approx0.27$-approximate.

Dates et versions

hal-01282507 , version 1 (03-03-2016)

Identifiants

Citer

Cristina Bazgan, Laurent Gourvès, Jérôme Monnot, Fanny Pascual. Single Approximation for Biobjective Max TSP. 9th Workshop on Approximation and Online Algorithms, Sep 2011, Saarbrücken, Germany. pp.49-62, ⟨10.1007/978-3-642-29116-6_5⟩. ⟨hal-01282507⟩
158 Consultations
0 Téléchargements

Altmetric

Partager

More