The Kadec–Pełczyński–Rosenthal subsequence splitting lemma for JBW$^∗$-triple preduals - Archive ouverte HAL
Article Dans Une Revue Studia Mathematica Année : 2015

The Kadec–Pełczyński–Rosenthal subsequence splitting lemma for JBW$^∗$-triple preduals

Résumé

Any bounded sequence in an $L^1$-space admits a subsequence which can be written as the sum of a sequence of pairwise disjoint elements and a sequence which forms a uniformly integrable or equiintegrable (equivalently, a relatively weakly compact) set. This is known as the Kadec–Pełczyński–Rosenthal subsequence splitting lemma and has been generalized to preduals of von Neuman algebras and of JBW∗-algebras. In this note we generalize it to JBW$^∗$-triple preduals.
Fichier non déposé

Dates et versions

hal-01281179 , version 1 (01-03-2016)

Identifiants

Citer

Antonio M. Peralta, H. Pfitzner. The Kadec–Pełczyński–Rosenthal subsequence splitting lemma for JBW$^∗$-triple preduals. Studia Mathematica, 2015, 227 (1), pp.77-95. ⟨10.4064/sm227-1-5⟩. ⟨hal-01281179⟩
182 Consultations
0 Téléchargements

Altmetric

Partager

More