Split and Match: Example-based Adaptive Patch Sampling for Unsupervised Style Transfer - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Split and Match: Example-based Adaptive Patch Sampling for Unsupervised Style Transfer

Résumé

This paper presents a novel unsupervised method to transfer the style of an example image to a source image. The complex notion of image style is here considered as a local texture transfer, eventually coupled with a global color transfer. For the local texture transfer, we propose a new patch-based method based on an adaptive partition that captures the style of the example image and preserves the structure of the source image. More precisely, this example-based partition predicts how well a source patch matches an example patch. Results on various images show that out method outperforms the most recent techniques.
Fichier principal
Vignette du fichier
frigo_cvpr2016_cameraready_ack.pdf (9.01 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01280818 , version 1 (03-03-2016)
hal-01280818 , version 2 (24-06-2016)

Identifiants

  • HAL Id : hal-01280818 , version 2

Citer

Oriel Frigo, Neus Sabater, Julie Delon, Pierre Hellier. Split and Match: Example-based Adaptive Patch Sampling for Unsupervised Style Transfer. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2016, Las Vegas, United States. ⟨hal-01280818v2⟩
508 Consultations
1290 Téléchargements

Partager

More