Optimal Best Arm Identification with Fixed Confidence - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Optimal Best Arm Identification with Fixed Confidence

Résumé

We provide a complete characterization of the complexity of best-arm identification in one-parameter bandit problems. We prove a new, tight lower bound on the sample complexity. We propose the 'Track-and-Stop' strategy, which is proved to be asymptotically optimal. It consists in a new sampling rule (which tracks the optimal proportions of arm draws highlighted by the lower bound) and in a stopping rule named after Chernoff, for which we give a new analysis.
Fichier principal
Vignette du fichier
MDLBAI.pdf (321.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01273838 , version 1 (14-02-2016)
hal-01273838 , version 2 (01-06-2016)

Identifiants

Citer

Aurélien Garivier, Emilie Kaufmann. Optimal Best Arm Identification with Fixed Confidence. 2016. ⟨hal-01273838v1⟩
693 Consultations
358 Téléchargements

Altmetric

Partager

More