Missing data super-resolution using non-local and statistical priors - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Missing data super-resolution using non-local and statistical priors

Résumé

We here address the super-resolution of a high-resolution im- age involving missing data given that a low-resolution im- age of the same scene is available. This is a typical issue in the remote sensing of geophysical parameters from differ- ent spaceborne sensors. Such super-resolution application in- volves large downscaling factor (typically from 10 to 20) and the super-resolution model should account for both texture patterns and specific statistical features, especially the spec- tral and non-Gaussian features. In this context, we propose a novel non-local approach and formally states the solution as the joint minimization of several projection constraints. We illustrate the relevance of the proposed model on real ocean remote sensing data, namely sea surface temperature fields, as well on visual textures.
Fichier principal
Vignette du fichier
icip2015_rfablet.pdf (880.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01271182 , version 1 (08-02-2016)

Identifiants

Citer

Ronan Fablet, François Rousseau. Missing data super-resolution using non-local and statistical priors. ICIP 2015 : IEEE International Conference on Image Processing, Sep 2015, Québec, Canada. pp.676 - 680, ⟨10.1109/ICIP.2015.7350884⟩. ⟨hal-01271182⟩
155 Consultations
183 Téléchargements

Altmetric

Partager

More