Compressed Online Dictionary Learning for Fast Resting-State fMRI Decomposition
Abstract
We present a method for fast resting-state fMRI spatial decompositions of very large datasets, based on the reduction of the temporal dimension before applying dictionary learning on concatenated individual records from groups of subjects. Introducing a measure of correspondence between spatial decompositions of rest fMRI, we demonstrates that time-reduced dictionary learning produces result as reliable as non-reduced decompositions. We also show that this reduction significantly improves computational scalability.
Origin | Files produced by the author(s) |
---|
Loading...