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ABSTRACT

We present a method for fast resting-state fMRI spatial decomposi-
tions of very large datasets, based on the reduction of the temporal
dimension before applying dictionary learning on concatenated in-
dividual records from groups of subjects. Introducing a measure of
correspondence between spatial decompositions of rest fMRI, we
demonstrates that time-reduced dictionary learning produces result
as reliable as non-reduced decompositions. We also show that this
reduction significantly improves computational scalability.

Index Terms— resting-state fMRI, sparse decomposition, dic-
tionary learning, online learning, range-finder

1. INTRODUCTION

Resting-state fMRI data analysis traditionally implies, as an initial
step, to decompose a set of raw 4D records (time-series sampled
in a volumic voxel grid) into a sum of spatially located functional
networks that isolate a part of the brain signals. Functional networks,
that can be seen as a set of brain activation maps, form a relevant
basis for the experiment signals that captures its essence in a low-
dimensional space. As such, they have been successfully used for
feature extraction before statistical learning, e.g. in decoding tasks.

While principal component analysis (PCA) on image arrays has
been the first method to be proposed for fMRI, independent com-
ponent analysis (ICA) is presently the most popular decomposition
technique in the field. It involves finding a spatial basis V that
is closest to a set of spatially independent sources. More recent
work have shown that good results can be obtained imposing spar-
sity rather than independence to spatial decomposition [1], relying
on dictionary learning formulation [2].

All these techniques suffer from their lack of scalability, as they
were initially designed to be applied to small datasets. The recent in-
crease in publicly available dataset size (e.g. HCP [3]) has revealed
their limits in terms of memory usage and computational time. Ef-
forts have been made to make decomposition methods available for
large scale studies, possibly with several groups. They involve using
a hierarchical model for dictionary learning [1] or incremental PCA
techniques [4]. However, the former only proposes PCA+ICA based
decomposition methods, which do not naturally yield sparse maps,
and the latter suffers from its computational complexity. Running a
satisfying decomposition algorithm on the full HCP dataset currently
requires a very large workstation.

In this paper, we focus on dictionary learning methods for fMRI,
and show how to make them more scalable in both time and mem-
ory. Uncovering the computational limitations of dictionary learning
when analysing very large datasets, we propose to perform random-
projection based hierarchical dimension reduction in the time direc-
tion before applying dictionary learning methods. As a result, time

and memory consumption are reduced, avoiding out-of-core compu-
tation. We introduce a measure of correspondence to relate results
obtained from compressed data to those from non compressed data,
and show that substantial gain in time and memory can be obtained
with no significant loss in quality of the extract networks.

2. SCALABITY OF DICTIONARY LEARNING FOR FMRI

2.1. rfMRI decomposition existing formalism

We consider multi-subject rfMRI data: a set of matrices (Xs)s∈[1,t]
in (Rn×p)t, with p voxels per volume, n temporal samples per
record, and t records. We seek to decompose it as :

∀s ∈ J1, tK, Xs = UsVT with Us ∈ Rn×k, V ∈ Rp×k (1)

Existing decomposition techniques vary in the criterion they opti-
mize, and on the hierarchical model they propose. We focus on
dictionary learning methods, that have been shown to obtain bet-
ter results than ICA in [1]. To handle group studies, we choose
the most simple hierarchical model, that consists in performing time
concatenation of the records – first proposed by [5] for ICA. We
write U ∈ Rnt×k and X ∈ Rnt×p the vertical concatenation of
(Us)s and (Xs)s, and seek to decompose X instead of Xs.

A good decomposition should allow a good reconstruction of
data while being spatially localized, i.e. sparse in voxel space. Such
a decomposition setting can be formalized in a dictionary learn-
ing (DL) optimization framework, that combines a sparsity inducing
penalty to a reconstruction loss. We seek to find k dense tempo-
ral atoms, i.e. time-series, that will constitute loadings for k sparse
spatial maps with good signal recovery. In one of its original formu-
lation [2], this leads to the following optimization problem:

min
U∈Rnt×k,

V∈Rp×k

‖X−U VT‖2F + λ ‖V‖1 s.t.∀j, ‖Uj‖2 ≤ 1 (2)

Each row Li(V) yields the sparse k loadings related to the k tem-
poral atoms for a single voxel time-serie, held in column Xi. [6]
introduces an efficient online solver for this minimization problem,
streaming on voxel time-series, i.e loading X columnwise: at it-
eration t, a voxel time-serie batch Lb(t)(V) is computed (using a
Lasso solver) on the present dictionary Ut−1, and Ut is updated
(using block coordinate descent) to best reconstruct previously
seen time-series from previously computed sparse codes. The fi-
nal spatial components are then obtained solving Lasso problems
minV∈Rp×k ‖X−UendV

T‖2F + λ‖V‖1.
This online algorithm provably converges towards a solution of

Eq. 2 under conditions satisfied in neuro-imaging. A good initial-
ization for temporal atoms is required to obtain an exploitable solu-
tion. It can typically be obtained by computing time-series associ-
ated to an initial guess on activation maps Vinit, e.g. obtained from



known brain networks. The temporal atoms are computed by solving
minUi ‖Xi −UiV

T
init‖2 for all i ∈ J1, nK.

2.2. Scalability challenge

Following [6], online dictionary learning has an overall complexity
of O(n p k2), as convergence is typically reached within one epoch
on rfMRI. In theory, the dictionary learning problem is thus compu-
tationally scalable. However, on large rfMRI datasets, online dictio-
nary learning faces two main challenges detailed below.

Out-of-core requirements for large datasets For datasets like
HCP (t=2000, n=1200, p=20000, 1.92TB), typical computers
are unable to hold all data in memory. It is thus necessary to stream
the data from disk, which is only reasonably efficient if the data are
stored in the same direction as it is accessed. Yet online DL algo-
rithm require to pass 3 times over data, during which it is streamed
in different directions (row-wise for initialization, columnwise for
DL and final Lasso solving), while fMRI images are naturally stored
row-wise. For the sake of efficiency, storage copy and manipulation
is required, which is a serious issue for neuroscientists dealing with
over 1TB datasets. Going out-of-core sets a large performance gap
between small datasets and large datasets.

Grid search in parameter setting The sparsity of the maps ob-
tained depends critically on parameter λ, that scales non trivially
with p. It is therefore impossible to set it independently from the
experiment size, and several runs must be performed to obtain best
maps, relative to their neurological relevance or a validation crite-
rion. Grid search should be run in parallel for efficiency, which is a
serious issue when doing out-of-core computation, as simultaneous
access to the disk from different processes makes the pipeline IO-
bound. Reducing dataset size therefore reduces disk and memory
usage, which permits the efficient use of more CPUs.

Both issues suggest to reduce memory usage by reducing
datasets size while keeping the essential part of its signal: being
able to keep data in memory avoids drastic loss in performance.

3. TIME-COMPRESSED DICTIONARY LEARNING

Reducing time dimension Good quality maps are already ob-
tained using small datasets with standard number of samples (ADHD
dataset, n=150). For this reason, we investigated how large datasets
can be reduced to fit in memory while keeping reasonable map ac-
curacy compared to the non-reduced version.

Indeed, the n time samples per subject are not uniformly scat-
tered in voxel space, and should exhibit some low dimension struc-
ture: we expect them to be scattered close to some low rank subspace
of Rp, spanned by a set of m vector Xs

r ∈ Rm×p. We thus perform
a hierarchical rank reduction : Xs is first approximated by a rank
m surrogate PTXs

r , and a final rank k decomposition is computed
over concatenated data. We show that such reduction is conservative
enough to allow good map extraction. Geometrically, we project X
on a low rank subset of Rn×p:

P = argmin
Q∈Rn×m

∥∥∥Xs −Q QTXs
∥∥∥
F

Xs
r = PTXs (3)

Then Xs = P Xs
r+Es where Es is a residual full rank noise matrix.

We approximate Xs with Xs
r at subject level to retain subject

variability. Hence, replacing X with Xr , the concatenation of (Xs
r),

in Eq. 2, we obtain a reduced dictionary learning objective.

Importantly, we must have mt>k so that Xr is at least of rank
k to recover k sparse activation maps. On the other hand, we show
that reducing Xs

r matrix beyondm<k can still provide good results.
In our reduced dictionary learning algorithm, time and memory

complexity are reduced by a factor α= m
n

, wherem should typically
be of the same order than k. This linear speed-up becomes much
more dramatic when reduction allows to go from out-of-core to in-
core computation. It comes to the cost of the time required for matrix
reduction that we study in the following paragraph.

While Eq. 3 can be seen as another way of decomposing (Xs)s,
let us stress that this decomposition is performed in voxel space, in
contrast with dictionary learning itself, that identify a good basis
in time space. The objective is to quickly find a good summary of
each (Xs)s prior to applying dictionary learning, so as to reduce the
dimensionality of the dictionary learning problem.

The range-finding approach Xs
r can be computed exactly with

truncated SVD, following Eckart–Young–Mirsky theorem. How-
ever, exact SVD computation is typically O(p n2), which is above
dictionary learning complexity and makes prior data reduction use-
less when trying to reduce both computation time and memory us-
age. Fortunately, we show that we do not need exact m rank best
approximation of X to obtain a satisfying V. Following [7] formal-
ism, we seek (P̂s)s ∈ (Rn×m)t such that

‖Xs − P̂s P̂sTXs‖F ≈ min
rank(Ys)≤m

‖Es‖ = ‖Xs −Ys‖F (4)

In [7], Alg. 4.4, Halko proposes a fast, randomized algorithm to
compute such P̂s, with measurable precision ‖Ês − Es‖. Setting
P̂ = Diag((P̂s)), X̂r = P̂X, we use this random range-finding
(rf) algorithm to solve Eq. 2, where we replace X with X̂r:

min
Ur∈Rmt×k

V∈Rp×k

∥∥∥P̂ X−UrV
T
∥∥∥2
F
+ λ ‖V‖1 s.t. ‖(Ur)j‖2 ≤ 1 (5)

The randomized range finding algorithm has a complexity of
O(n pm), which is of same order as dictionary learning algorithm.
In practice, we show in Sec. 5 that its cost becomes negligible with
respect to the reduction of dictionary learning cost, when the reduc-
tion ratio is high enough.

In a more straightforward way, we can set Xs
r = Xs

I , with I
subset (ss) of J1, nK of size m. This category of reduction includes
time subsampling of records. In this case, ‖Ês

ss−Es‖ cannot be con-
trolled, and is expected to be larger than ‖Ês

rf −Es‖. Subsampling,
for example, is expected to alias high frequency signal in records,
preventing the recovery of activation maps with high frequency load-
ings in final dictionary learning application.

4. VALIDATION

Reference result-set Validation of dictionary learning methods for
rfMRI is challenging, as there is no ground truth to assess the quality
of resulting map sets. However, we can assess how much a result-set
V obtained on a reduced dataset Xr from Eq. 5 is comparable to a
result-set V0 obtained on X from Eq. 2.

Result-set comparison Two sets of maps V0 and V can only be
compared with an indicator invariant to map ordering. Two sets are
comparable if each map from the first set is comparable to a map
in the second set. We find the best one-to-one coupling between



these two sets of maps and compute correlation between each best

assigned couple of maps: corr(v0
i ,vj) =

|(v0
i )

Tvj |
‖v0

i ‖2‖vj‖2
to measure

similarity between two maps vj (held in column Cj(V)) and v0
i .

We set d to be the mean correlation between best assigned maps:

d(V,V0) = max
Ω∈Sk

Tr
(
VTΩ V0) (6)

where Sk is the set of permutation matrices. Ω can be computed
efficiently using the Hungarian algorithm.

Comparing random results Eq. 2 and 5 admits many local
minima that depend on algorithm initialization, and on the or-
der used for streaming dataset columns. For any dataset Y ∈
{X, (Xr)

reduction
method }, we expect obtained maps Vi = DLi(Y)

to capture a neurological/physical phenomenon for any run i cor-
responding to a streaming order. As in [8], we perform l runs
numbered on Sl ⊂ N of the algorithm to obtain different maps, and
compare the concatenation Vl(Y) = [(Vi)i∈Sl ] of these maps to
the concatenation of reference maps V0

l (X) = [(V0
i )i∈S0

l
] with

runs numbered on S0
l :

dl(X,S0
l ,Y,Sl) = d

(
V0
l (X),Vp(Y)

)
(7)

We thus take into account non unicity of DL solutions: different
maps are obtained when performing the dictionary learning algo-
rithm over the same data with the same parameters. We model result
maps (vi)i to be part of a larger full result-set V:

V(Y) =
{

vi = Ci(V) ∈ Rp s.t. V ∈ Rp×k,∃U ∈ Rn×k,

(U,V) ∈ argmin
U,V

∥∥∥Y −UVT
∥∥∥2
F
+ λ ‖V‖1

}
(8)

When result-sets are concatenated over all possible streaming orders,
we expect dp to converge toward a S(0)

p independent measure:

d∞
(
V(X),V(Y)

)
= lim

l→∞
dl
(
X,S0

l ,Y,Sl
)

(9)

It is expected that d∞(V(X),V(X)) = 1, but p is finite in prac-
tice. Ensuring S0

l ∩ Sl = ∅, we measure mean result-set correspon-
dence dl(X, S0

l ,X, Sl) over different runs on the same dataset X,
and compare it to dl(X, S0

l ,Y, Sl) to assess the reduction effect.

5. RESULTS

Tools and datasets We validate our reduction framework over two
different datasets with different size: ADHD data, with 40 records,
n = 150 time steps per record; a subset of HCP dataset, using 40
subjects, 2 records per subject, subsampling records from n=1200
to n=400 to obtain reference X.

Dictionary learning output depends on its initialization, and the
problem of choosing the best number of components k is very ill-
posed. We bypass these problems by choosing k = 70 for HCP
dataset, k = 20 for ADHD dataset, and use reference ICA-based
maps RSN20 and RSN70 from [9] as initialization – we prune un-
used dictionary atoms on HCP dataset.

For benchmarking, we measure CPU time only, i.e. ignore IO
time as it is very platform dependent. To limit disk access in out-of-
core computation, small memory usage is crucial for IO time.

We use scikit-learn for computation, along with the Nilearn
neuro-imaging library. Code for the methods and experiments is
available at http://github.com/arthurmensch/nilearn/tree/isbi.
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Fig. 1. Result-set correspondence with non-reduced DL result-set,
using different methods with different reduction ratios, increasing
number of runs to show dl stabilization; variance over runs com-
puted using 4 different result-sets S(0)

l ; ADHD dataset.

Indicator and reduction validity Fig. 1 shows dl behavior as l
increases. The results demonstrate the relevance of random range-
finding as it out-performs simple subsampling. We first obtain a
reference set of maps V0

p from non-reduced X, choosing λ to obtain
little overlapping maps (λ = 1, 6 for ADHD, HCP). Secondly, we
compute dl(X,S0

l ,Y,Sl) setting Y = {X, (Xr)rf,m, (Xr)ss,m},
for various m ∈ [n/40, n]. As the relationship between λ and a
given level of sparsity depends on m, we run DL on Y on a range of
λ so as to find the value that matches best the reference run.

We observe that running DL several times does produce sets of
maps that overlap more and more, as they cover a larger part of the
result-sets V defined in Eq. 8, and stabilizes for l>10. This suggest
that dl does cater for randomness in DL algorithms and constitutes a
good indicator for comparing two DL methods.

For α > .025, and l ≥ 2, Fig. 1 shows that compressed DL
produces maps that are as comparable with non-reduced DL maps
as non-reduced DL maps obtained streaming on different orders:

dl(X,S0
l ,X,Sl) ≈ d̂l(X,S0

l ,Xr,Sl) (10)

Overlap between Vl(X) and Vl(Xr) is thus comparable to overlap
between Vl(X) and Vl(X) for different runs from Sl, S0

l . They
are therefore of the same inner quality for neuroscientists as it not
possible to tell one apart from the other.

For large compression factors – typically with m<k, for α<.1
on ADHD, α < .05 on HCP – range finding reduction performs
significantly better than subsampling. Both methods perform simi-
larly for small compression factors, which shows that subsampling
already provides good large low-rank approximation of X. Using a
range-finding algorithm is therefore useful when drastically reducing
data size, typically when loading very large datasets in memory.

Qualitative accuracy We validate qualitatively our results, as this
is crucial in DL decomposition: maps obtained from reduced data
should capture the same underlying neurological networks as refer-
ence maps. In Fig. 2, we display matched maps when comparing
two result-sets. For this, we find matchings between sets (Vl,V0

l ),
and we display the maps corresponding to the median-value of this
matching. Maps are strongly alike from a neurological perspective.
In particular, maps do not differ more between our reduced dictio-
nary learning approach and the reference algorithm than across two
runs of the reference algorithm.

http://github.com/arthurmensch/nilearn/tree/isbi
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Fig. 3. Time/accuracy using range-finder projectors and subsam-
pling before DL; blue stripe recalls correspondence of results when
performing different runs on non-reduced X. l= 10, 3 for ADHD,
HCP. Variance over runs computed using 4 distinct subject sets S(0)

l .

Time and accuracy tradeoff For efficient neuroimaging data
analysis, the important quantity is the tradeoff between quality of
the results and computation time. On Fig. 3, we plot dl(X,Y)
– omitting Sl,S0

l in notation – against computational CPU time,
for various Y. Using range-finding algorithm and to a lesser ex-
tent time subsampling on data before map decomposition does not
significantly deteriorate results up to large reduction factor, while
allowing large gains in time and memory. Compression can be
higher for larger datasets: we can reduce our HCP subset up to
40 times, ADHD up to 20 times, keeping dl(X,Xr) within the
standard deviation of dl(X,X).

The range-finder algorithm adds a time overhead that shift per-
formance curve towards higher time for large compression. How-
ever, it allows 4 times lower memory usage and thus higher overall
efficiency when considering IO. Moreover, benchmarks were per-
formed on a single core, while reduction can be parallelized over
subjects to reduce its overhead.

We outline best time/accuracy trade-off reduction ratios in Fig. 3
and Table 1. They depend on chosen k and on dataset, but any
reasonably low reduction (with m - k) ratio is likely to produce
good results with little accuracy loss. Following this strategy, we set
α = .025 and performed the entire processing of 100 subjects of the
HCP dataset (384GB) on a single workstation (64GB RAM) in less
than 7 hours.

Data RF α CPU Time Corresp. dl(X,Y)
Red. N-red. Reduced Non-red.

HCP .025 849 s 7425 s .703±.141 .628±.105
ADHD .05 71 s 186 s .796±.020 .801±.016

Table 1. Time/accuracy with most interesting method for each
dataset, comparing to reference DL run. RF α: range-finder ratio
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7. CONCLUSION

We introduce the use of a randomized range finding algorithm to
reduce large scale datasets before performing dictionary learning
and extract spatial maps. To prove efficiency of time reduction be-
fore dictionary learning, we have designed a meaningful indicator
to measure result maps correspondence, and have demonstrated that
fMRI time samples have a low rank structure that allows range find-
ing projection to be more efficient than simple subsampling.

This approach enables a 40-fold data reduction upon loading
of each subjects. It thus makes processing large datasets such as
the HCP (1.92TB) tractable on a single workstation, time-wise and
memory-wise.
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