Generalization of the Kimeldorf-Wahba correspondence for constrained interpolation - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2016

Generalization of the Kimeldorf-Wahba correspondence for constrained interpolation

Résumé

In this paper, we extend the correspondence between Bayes' estimation and optimal interpolation in a Reproducing Kernel Hilbert Space (RKHS) to the case of linear inequality constraints such as boundedness, monotonicity or convexity. In the unconstrained interpolation case, the mean of the posterior distribution of a Gaussian Process (GP) given data interpolation is known to be the optimal interpolation function minimizing the norm in the RKHS associated to the GP. In the constrained case, we prove that the Maximum A Posteriori (MAP) or Mode of the posterior distribution is the optimal constrained interpolation function in the RKHS. So, the general correspondence is achieved with the MAP estimator and not the mean of the posterior distribution. A numerical example is given to illustrate this last result.
Fichier principal
Vignette du fichier
corres-Hassan-janv5.pdf (2.43 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01270237 , version 1 (05-02-2016)

Identifiants

Citer

Xavier Bay, Laurence Grammont, Hassan Maatouk. Generalization of the Kimeldorf-Wahba correspondence for constrained interpolation. Electronic Journal of Statistics , 2016, 10 (1), pp.1580-1595. ⟨10.1214/16-EJS1149⟩. ⟨hal-01270237⟩
550 Consultations
261 Téléchargements

Altmetric

Partager

More