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Abstract
In this paper, we extend the correspondence between Bayes’ estimation and optimal inter-
polation in a Reproducing Kernel Hilbert Space (RKHS) to the case of linear inequality
constraints such as boundedness, monotonicity or convexity. In the unconstrained interpo-
lation case, the mean of the posterior distribution of a Gaussian Process (GP) given data
interpolation is known to be the optimal interpolation function minimizing the norm in
the RKHS associated to the GP. In the constrained case, we prove that the Maximum A
Posteriori (MAP) or Mode of the posterior distribution is the optimal constrained inter-
polation function in the RKHS. So, the general correspondence is achieved with the MAP
estimator and not the mean of the posterior distribution. A numerical example is given to
illustrate this last result.
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Kernel Hilbert Space; Gaussian process; Bayesian estimation; Maximum A
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1 Introduction

Consider a function y defined on a nonempty setX of Rd (d ≥ 1). The curve-fitting problem
is to estimate y using a prior information and a finite set of noise-free evaluations :

y
(
x(i)
)

= yi, i = 1, . . . , n,

where x(1), . . . , x(n) are n distinct points of X. As in [3], the prior information is summa-
rized by a zero-mean Gaussian Process (GP) {Y (x)}x∈X with covariance function

(1) K(x, x′) := E(Y (x)Y (x′)),
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where E denotes expectation. In this case, the usual Bayesian estimator ŷ of y is the mean
of the posterior distribution of the GP {Y (x)}x∈X given data :

ŷ(x) := E
(
Y (x)

∣∣ Y (x(1)) = y1, . . . , Y
(
x(n)
)

= yn
)
.

From [9], we have the following explicit expression for ŷ :

(2) ŷ(x) = k(x)>K−1y, x ∈ X,

where k(x) =
(
K
(
x, x(1)

)
, . . . , K

(
x, x(n)

))>
, K is the matrix

(
K
(
x(i), x(j)

))
1≤i,j≤n and

y = (y1, . . . , yn)>.
On the other hand, it is well known (see [12]) that this estimation function (2) is the

unique solution of the following optimization problem :

(Q) min
h∈H∩I

‖h‖2H ,

where H is the Reproducing Kernel Hilbert Space (see [1]) associated to the positive
definite kernel K defined by (1) and I is the set of interpolant functions :

I :=
{
f ∈ RX : f

(
x(i)
)

= yi, i = 1, . . . , n
}
.(3)

This result will be referred to as the correspondence between Bayes’ estimation and optimal
interpolation in a RKHS or Kimeldorf-Wahba correspondence.

Now, we suppose that the function y is known to satisfy some properties or constraints
such as boundedness, monotonicity or convexity. Formally, let C be a closed convex set of
RX corresponding to such constraints. For instance, C is of the form :

C =
{
f ∈ RX : −∞ ≤ a ≤ f(x) ≤ b ≤ +∞, x ∈ X

}
(boundedness),

C =
{
f ∈ RX : ∀x ≤ x′, f(x) ≤ f(x′)

}
(monotonicity),

C =
{
f ∈ RX : ∀λ ∈ [0, 1], ∀x, x′, f(λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′))

}
(convexity).

If H ∩ C ∩ I 6= ∅, the following convex optimization problem :

(P ) min
h∈H∩C∩I

‖h‖2H

has a unique solution denoted by hopt (see e.g. [7] and [11]), which can be seen as the
optimal constrained interpolation function associated to the knots x(i), i = 1, . . . , n.

In the Bayesian framework, the problem is now to make inference from the condi-
tional distribution of the GP {Y (x)}x∈X given Y ∈ C (prior information) and given data
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Y
(
x(i)
)

= yi, i = 1, . . . , n. This conditional distribution can be thought as a truncated
multivariate normal distribution but in an infinite dimensional linear space.

The aim of this paper is to prove that the constrained interpolation function hopt
solution of problem (P ) is the mode or Maximum A Posteriori (MAP) of this posterior
distribution {Y | Y ∈ C ∩ I}.

The paper is organized as follows : in Section 2, we consider the finite-dimensional case
to get insight into the natural correspondence between constrained interpolation functions
and Bayes’ estimators. Section 3 is devoted to the main result. We approximate the
original Gaussian process by a sequence of finite-dimensional Gaussian processes (see e.g.
[5], [8] and [10]). The MAP estimator of the finite-dimensional approximation process is
well defined. Furthermore, this sequence of MAP estimators is shown to be convergent to
the optimal constrained interpolation function solution of problem (P ). As a consequence,
we can interpret hopt as the most likely function or mode of the posterior distribution
{Y | Y ∈ C ∩ I}. This result can be seen as a generalization of the Kimeldorf-Wahba
correspondence in the case of curve-fitting (interpolation case) taking into account linear
inequality constraints. This new correspondence is illustrated in Section 4.

2 The natural correspondence for finite-dimensional

Gaussian processes

In this section, we assume that {Y m(x)}x∈X is a finite-dimensional or degenerate GP in
the sense that :

(4) Y m(x) :=
m∑
j=1

ξjφj(x), x ∈ X,

where {φj, 1 ≤ j ≤ m} is a set of m linearly independent functions in RX and ξ =

(ξ1, . . . , ξm)> ∈ Rm is a zero-mean Gaussian vector with covariance matrix Γm assumed to
be invertible. The covariance function of Y m can be expressed as

(5) Km(x, x′) = φ(x)>Γmφ(x′),

where φ(x) = (φ1(x), . . . , φm(x))>. Let

(6) Hm := Vect {φj, 1 ≤ j ≤ m} =

{
h ∈ RX : ∃(c1, . . . , cm) ∈ Rm, h =

m∑
j=1

cjφj

}

be the linear space spanned by the basis functions φj and consider on Hm the dot prod-
uct (h1, h2)m = c>h1

Γ−1m ch2 , where chi
are the coordinates of hi with respect to the basis
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{φ1, . . . , φm}, i = 1, 2. Since Γmφ(x) is the vector of coordinates of Km(., x) ∈ Hm (see
equation (5)), we have

(h,Km(., x))m = c>h Γ−1m Γmφ(x) = c>h φ(x) = h(x).

Hence, (Hm, (., .)m) is the RKHS with reproducing kernel Km. In the following proposition,

we denote by
◦

Ĥm ∩ C the interior of Hm ∩ C in the finite-dimensional space Hm.

Proposition 1. Let {Y m(x)}x∈X be a process of the form (4) and Hm defined by (6) be
the RKHS associated with the kernel function Km given in (5). Let us assume that C is

a closed convex subset of RX (for pointwise topology) and
◦

Ĥm ∩ C ∩ I is nonempty, where
I :=

{
f ∈ RX : f

(
x(i)
)

= yi, i = 1, . . . , n
}

.
Then, the MAP estimator ŷm defined as the mode of the posterior distribution of

{Y m | Y m ∈ C ∩ I} is well defined and is equal to the constrained interpolation func-
tion hopt,m solution of

arg min
h∈Hm∩C∩I

‖h‖2m.

Proof. Remark that the sample paths of Y m are in Hm by definition. Hence, it makes
sense to define the density of Y m with respect to the uniform reference measure λm on
Hm (m-dimensional volume measure or Lebesgue measure). This density is defined up to
a multiplicative constant and to give it an explicit expression, we consider the following
linear isomorphism :

i : c ∈ Rm 7−→ h :=
m∑
j=1

cjφj ∈ Hm.

We can define the measure λm on Hm as the image measure λm := i(dc), where dc =
dc1 × . . . × dcm is the m-dimensional volume measure in Rm. So, if B ∈ B(Hm) is a
Borelian subset of Hm, we have

λm(B) =

∫
Rm

1i−1(B)(c)dc1 × . . .× dcm.

To calculate the probability density function (pdf) of Y m, we write

P (Y m ∈ B) = P
(
ξ ∈ i−1(B)

)
.

Using the fact that ξ is a zero-mean Gaussian vector N (0,Γm), we obtain

P (Y m ∈ B) =

∫
Rm

1i−1(B)(c)
1√

2π
m|Γm|1/2

exp

(
−1

2
c>Γ−1m c

)
dc

=

∫
Rm

1B(i(c))
1√

2π
m|Γm|1/2

exp

(
−1

2
‖i(c)‖2m

)
dc.
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By the transfer formula, we get

P (Y m ∈ B) =

∫
Hm

1B(h)
1√

2π
m|Γm|1/2

exp

(
−1

2
‖h‖2m

)
dλm(h).

Hence, the (unconstrained) density of Y m with respect to λm is the function

h ∈ Hm 7−→
1√

2π
m|Γm|1/2

exp

(
−1

2
‖h‖2m

)
.

Let us now introduce the inequality constraints described by the convex set C. In the
Bayesian framework, the prior is the following truncated pdf (with respect to λm) :

h ∈ Hm 7−→ k−11(h∈Hm∩C) exp

(
−1

2
‖h‖2m

)
,

where k 6= 0 (since
◦

Ĥm ∩ C 6= ∅) is a normalizing constant. Assume
◦

Ĥm ∩ C ∩ I is
nonempty, the posterior likelihood Lpos defined as the pdf of Y m given data interpolation,
is given by

(7) Lpos(h) = k−11(h∈Hm∩C∩I) exp

(
−1

2
‖h‖2m

)
,

where k 6= 0 (since
◦

Ĥm ∩ C ∩ I 6= ∅) is a different normalizing constant. Remark that this
density Lpos is defined with respect to the (m − n)-dimensional measure volume induced
by λm on the affine subspace Hm ∩ I of Hm. By definition, the MAP estimator ŷm is the
solution of the following optimization problem

arg maxLpos(h) = arg min (−2 logLpos(h)) .

From expression (7), the MAP estimator ŷm is the constrained interpolation function hopt,m
solution of

arg min
h∈Hm∩C∩I

‖h‖2m.

3 The main result

In a Bayesian statistical framework, the prior is the probability distribution of a zero-mean
GP {Y (x)}x∈X with covariance function K defined by (1) and assumed to be definite. We
suppose that the realizations of Y are in the Banach space E = C0(X), the set of continuous
functions defined on a compact setX. For the sake of simplicity, we suppose thatX = [0, 1].
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The results presented in this paper can be generalized to the multi-dimensional case. Let
H be the RKHS associated to the positive definite function K. Then, H is an Hilbertian
subspace of E since

‖h‖E = sup
x∈X
|(h,K(., x))H | ≤ c‖h‖H ,

where c = supx∈X K(x, x)1/2 < +∞ by continuity of the kernel function K. Here, we
suppose that we have also a priori information such as boundedness, monotonicity or
convexity constraints. Assume that these properties are mathematically described by the
set C, where C is a closed convex subset of RX as in Section 2 (a fortiori, C ∩ E is
also a closed convex set of E)1. Finally, let I be the set of data interpolating functions
I =

{
f ∈ E : f

(
x(i)
)

= yi, i = 1, . . . , n
}

. Our aim is to make inference from the posterior
distribution of the Gaussian process Y , so we need to handle the conditional distribution{

Y
∣∣ Y ∈ C and Y

(
x(i)
)

= yi, i = 1, . . . , n
}
.

3.1 Approximation of the Gaussian process Y

Keeping in mind Section 2, we approximate the GP Y by the following finite-dimensional
Gaussian process :

(8) Y N(x) :=
N∑
j=0

Y (tN,j)φN,j(x), x ∈ X,

where 0 = tN,0 ≤ tN,1 ≤ . . . ≤ tN,N = 1 is a graded subdivision of X = [0, 1] such that
δN = max{|tN,j+1− tN,j|, j = 0, . . . , N − 1} −→

N→+∞
0 and φN,j are the associated piecewise

linear functions (or hat functions) such that φN,j(tN,i) = δij, 0 ≤ i, j ≤ N , where δij is

the Kronecker’s Delta function. Note that ξ := (Y (tN,0), . . . , Y (tN,N))> is a zero-mean
Gaussian vector. By continuity of the sample paths of Y and continuous piecewise linear
approximation in the Banach space E = C([0, 1]), Y N converges uniformly to the original
GP Y when N tends to infinity with probability one.

To simplify the proof of the main result (see Theorem 2 below), block matrix structures
will be used. To get this structure, we rename the knots of the partition ∆N = {t0, . . . , tN}
such that

∆N+1 = ∆N ∪ {tN+1}.(9)

The finite-dimensional approximation of Gaussian Processes (GPs) can be rewritten as

Y N(x) :=
N∑
j=0

Y (tj)ϕN,j(x),

1The application f ∈ E −→ f ∈ RX is continuous.
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where ϕN,j is the hat function associated to the knot tj.
From Section 2, Y N is a finite-dimensional GP with covariance function

KN(x, x′) =
N∑

k,`=0

K(tk, t`)ϕN,k(x)ϕN,`(x
′) = ϕ(x)>ΓNϕ(x′),

where ΓN := (K(tk, t`))0≤k,`≤N . Note that ΓN is invertible since K is assumed to be
definite. The corresponding RKHS is HN := Vect{ϕN,j, j = 0, . . . , N} with the norm

given by ‖h‖HN
:= c>h Γ−1N ch, where ch = (h(t0), . . . , h(tN))>.

Now, we can compute the posterior likelihood function and the mode (or MAP) esti-
mator ŷN as a function defined on X.

Proposition 2. If
◦

ĤN ∩ C ∩ I 6= ∅, the convex optimization problem

(PN) min
h∈HN∩C∩I

‖h‖2HN

has a unique solution denoted by hopt,N . Additionally, the posterior likelihood function of
Y N incorporating inequality constraints and given data is of the form

(10) LN
pos(h) = k−1N 1h∈HN∩C∩I exp

(
−1

2
‖h‖2HN

)
,

where kN is a normalizing constant. Then, the MAP estimator ŷN of the posterior distri-
bution (10) is the solution hopt,N of the problem (PN).

Proof. It is a consequence of Proposition 1 of Section 2.

According to the uniform convergence of Y N to Y , it is natural to define the MAP
estimator ŷ of the Gaussian process Y as the limit, if it exists, of the MAP estimator ŷN
of Y N as N tends to infinity.

3.2 Asymptotic analysis

This subsection is devoted to the main result of the paper. The aim is to prove that
the limit ŷ := lim

N→+∞
ŷN of the MAP estimator ŷN of Y N exists in E and is the optimal

constrained interpolation function hopt in H :

hopt := arg min
h∈H∩C∩I

‖h‖2H ,

where H is the RKHS associated to the process Y , C is the closed convex set of RX

describing the inequality constraints and I is the set of interpolating functions. To reach
this goal, we need to analyze the link between the nested linear subspaces HN in E and
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the RKHS H associated with the reproducing kernel K. To do this, we denote by πN the
projection operator from E onto HN defined by :

∀f ∈ E, πN(f) :=
N∑
j=0

f(tj)ϕN,j.

Theorem 1. For any f ∈ E, let us define the sequence of real numbers (mN(f))N≥1 by

mN(f) := ‖πN(f)‖2HN
= c>f Γ−1N cf ,

where cf := (f(t0), . . . , f(tN))>. Then, (mN(f))N≥1 is nonnegative and increasing. Fur-
thermore, the RKHS H associated to the covariance function K is characterized by

H =

{
f ∈ E : sup

N
mN(f) < +∞

}
and, for all f ∈ H,

(11) ‖f‖2H = sup
N
mN(f) = lim

N→+∞
mN(f) = lim

N→+∞
‖πN(f)‖2HN

.

In particular, for f ∈ H and N ≥ 1,

(12) ‖πN(f)‖HN
≤ ‖f‖H .

Proof. As ΓN is symmetric positive definite, the sequence (mN(f))N is nonnegative. The
indexing of the knots (see (9)) leads to the following block structure :

ΓN+1 :=

(
ΓN a
a> K(tN+1, tN+1)

)
, where a = (K(t0, tN+1) . . . , K(tN , tN+1))

>.

The monotonicity property of the sequence (mN(f))N≥1 is a consequence of Lemma 1 (see
Section 3.3). Thus,

lim
N→+∞

mN(f) = sup
N
mN(f) ∈ [0,+∞].

Let us prove that H ⊂ {f ∈ E : supN mN(f) < +∞}. Let f ∈ H and fN be the
orthogonal projection of f onto the space Vect {K(., ti), i = 0, . . . , N} in H. Then

‖fN‖2H ≤ ‖f‖2H .

According to the characterization of the orthogonal projection and the reproducing prop-

erty in a RKHS, we have fN =
N∑
j=0

βN,jK(., tj), where βN = (βN,0, . . . , βN,N)> is the

solution of ΓNβN = cf . Therefore, βN = Γ−1N cf and

‖fN‖2H = β>NΓNβN = c>f Γ−1N cf .

8



Hence, ‖fN‖2H = mN(f) ≤ ‖f‖2H < +∞ and supN mN(f) < +∞.
Let us prove now that {f ∈ E : supN mN(f) < +∞} ⊂ H. Let f ∈ E be such

that supN mN(f) < +∞. Consider fN :=
∑N

j=0 βN,jK(., tj), where βN = Γ−1N cf . Then,

fN ∈ H and ‖fN‖2H = c>f Γ−1N cf ≤ M < +∞. Thus, (fN)N is a bounded sequence in the
Hilbert space H. By weak compactness in H, it exists (fNk

)k such that fNk
⇀
k
f∞ ∈ H. In

particular, for all x ∈ [0, 1], fNk
(x) = (fNk

, K(., x))H −→
k

f∞(x). But, for any fixed j ≥ 1,

fNk
(tj) = f(tj), for k large enough.

Hence, for all j, f∞(tj) = f(tj) and f = f∞ ∈ H by continuity and density of the knots in
[0, 1]. This ends the proof of the first part of the characterization.

To conclude, let F be defined as F := Vect {K(., tj), j ≥ 0}. If g ∈ F⊥, we have
(g,K(., tj))H = g(tj) = 0, j ≥ 0. Hence, by continuity, g = 0 and F⊥ = {0}. So, by
classical approximation in a Hilbert space, the orthogonal projection fN of any f ∈ H
onto the subspace FN := Vect {K(., tj), j = 0, . . . , N} satisfies

fN −→
N→+∞

f in H.

Therefore, ‖fN‖2H = mN(f) −→
N→+∞

‖f‖2H , which completes the proof of the theorem.

Now, we can state the main result of the paper.

Theorem 2 (Correspondence between constrained interpolation and Bayesian
estimation). Under the following assumptions :

(H1)
◦

Ĥ ∩ C ∩ I 6= ∅,
(H2) ∀N, πN(C) ⊂ C,

the convex optimization problem

(PN) min
h∈HN∩C∩I

‖h‖2HN

has a unique solution denoted by hopt,N and

(13) hopt,N −→
N→+∞

hopt in E = C0(X).

Furthermore, the MAP estimator ŷN solution of

arg max
h∈HN

LN
pos(h),

where LN
pos(h) is defined in (10), coincides with hopt,N and we also have

ŷN −→
N→+∞

hopt in E = C0(X).
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Proof. To avoid some technical difficulties, we suppose that the data points belong to ∆N

for N large enough :

(H0)
{
x(i), i = 1, . . . , n

}
⊂ ∆N .

The proof without this last assumption can be found in [2] and [4].
Let g ∈ H ∩ C ∩ I, then πN(g) ∈ HN . As πN(C) ⊂ C, πN(g) ∈ C and πN(g) ∈ I due

to (H0). So, HN ∩ C ∩ I is a nonempty closed convex subset of HN . Therefore, (PN) has
an unique solution hopt,N . Write

‖hopt,N − hopt‖E ≤ ‖hopt,N − πN(hopt)‖E + ‖πN(hopt)− hopt‖E.

We know from approximation theory in the Banach E = C0(X) that

‖πN(hopt)− hopt‖E −→
N→+∞

0.

According to the Lemma 2 of Section 3.3,

‖hopt,N − πN(hopt)‖2E ≤ c2‖hopt,N − πN(hopt)‖2HN
.

Write now in HN

(14) ‖hopt,N − πN(hopt)‖2HN
= ‖hopt,N‖2HN

+ ‖πN(hopt)‖2HN
− 2 (hopt,N , πN(hopt))HN

.

As hopt,N is the orthogonal projection of 0 onto the convex set HN ∩ C ∩ I in the Hilbert
space HN and πN(hopt) ∈ HN ∩ C ∩ I, we have

(0− hopt,N , πN(hopt)− hopt,N)HN
≤ 0.

Therefore,
‖hopt,N − πN(hopt)‖2HN

≤ ‖πN(hopt)‖2HN
− ‖hopt,N‖2HN

,

so that, by (12)

(15) ‖hopt,N − πN(hopt)‖2HN
≤ ‖hopt‖2H − ‖hopt,N‖2HN

.

From (15), it is sufficient to prove

‖hopt,N‖2HN
= min

h∈HN∩C∩I
‖h‖2HN

−→
N→+∞

‖hopt‖2H = min
h∈H∩C∩I

‖h‖2H .

As πN(hopt) ∈ HN ∩ C ∩ I and by (12),

‖hopt,N‖2HN
≤ ‖πN(hopt)‖2HN

≤ ‖hopt‖2H .

Hence,

(16) lim
N
‖hopt,N‖2HN

≤ ‖hopt‖2H .
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Let h̃N be the solution of the problem

min
h∈H

{
‖h‖2H : h(tj) = hopt,N(tj), j = 0, . . . , N

}
.

It can be expressed as
h̃N = kN (.)>Γ−1N chopt,N

,

where kN (.) = (K (., t0) , . . . , K (., tN))>. Then, we get ‖h̃N‖H = c>hopt,N
Γ−1N chopt,N

=

‖hopt,N‖HN
. By (16), (‖h̃N‖H)N is a bounded sequence in H. By weak compactness,

there exists a sub-sequence h̃Nk
such that

(17) h̃Nk
⇀

k→+∞
h∞ ∈ H, (weak convergence).

Let us prove that h∞ ∈ C. For fixed j and for k large enough, h̃Nk
(tj) = hopt,Nk

(tj) −→
k→+∞

h∞(tj). Hence, πN(hopt,Nk
) −→
k→+∞

πN(h∞) for any fixed N ≥ 1. As HN ∩C is closed in HN

and πN(hopt,Nk
) ∈ C, we have πN(h∞) ∈ C. As πN(h∞) −→

N→+∞
h∞ in E and C is closed in

E = C0(X), we conclude that h∞ ∈ C.
Let us show now that h∞ ∈ I. As x(i) ∈ ∆N for N large enough, we get

h̃Nk

(
x(i)
)

= hopt,N
(
x(i)
)

= yi. As h̃Nk

(
x(i)
)

=
(
h̃Nk

, K
(
., x(i)

))
H

and h̃Nk
⇀

k→+∞
h∞,

we have h∞
(
x(i)
)

= yi. Hence h∞ ∈ I.

From property (17), equality ‖h̃N‖H = ‖hopt,N‖HN
and inequality (16), we have

‖h∞‖2H ≤ lim
k
‖h̃Nk

‖2H ≤ lim
k
‖h̃Nk

‖2H ≤ ‖hopt‖2H .

Since h∞ ∈ H ∩C ∩ I, we have also ‖hopt‖2H ≤ ‖h∞‖2H so that ‖hopt‖2H = ‖h∞‖2H and thus
limk ‖h̃Nk

‖2H = ‖hopt‖2H . Since norm convergence and weak convergence (see (17)) imply
strong convergence, we have

h̃Nk
−→

k→+∞
h∞ ∈ H,

and also h̃N −→
N→+∞

h∞ ∈ H by a classical compacity argument. Hence, lim
N
‖hopt,N‖2HN

=

lim
N
‖h̃N‖2H = ‖h∞‖2H = ‖hopt‖2H . Then from (15), ‖hopt,N − πN(hopt)‖2HN

−→
N→+∞

0 and

‖hopt,N − hopt‖E −→
N→+∞

0.

The second part is a consequence of Proposition 2.

Comments Remark that assumption (H1) is not restrictive and assumption (H2) is
ensured for applications in consideration in this paper (boundedness, monotonicity or
convexity constraints). For instance, if f is a non-decreasing function on [0, 1], then the
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piece-wise linear interpolation πN(f) is also non-decreasing for any N . For a general convex
set C, the sequence of approximation (πN(f))N must be adapted to satisfy assumption
(H2).

Now, the constrained optimization problem has a nice probabilistic interpretation as
a Bayesian estimator of a function y ∈ C0(X). The function hopt = ŷ := limN ŷN can be
thought as the most likely function in the subspace C of constrained functions h satisfying
h
(
x(i)
)

= yi, i = 1, . . . , n. Theorem 2 proves that this estimator ŷ is independent of the
choice of the subdivision {tj} and is a smooth function since ŷ = hopt is the solution of a
constrained interpolation problem in a RKHS.

3.3 Technical lemmas

Lemma 1. Let B :=

(
A a
a> α

)
be a real block matrix where A is an N×N matrix, a is an

N×1 vector and α ∈ R. Assume that B is symmetric positive definite. Let y = (x, yN+1)
>,

where x is an N × 1 vector and yN+1 ∈ R. Then,

y>B−1y ≥ x>A−1x.

Proof of Lemma 1. Write y = Bv with v = B−1y =

(
u

vN+1

)
. By block matrix multipli-

cation, we have
x = Au+ vN+1a and yN+1 = a>u+ αvN+1.

Now, y>B−1y = v>Bv = u>Au+2vN+1a
>u+αv2N+1 and x>A−1x = u>Au+2vN+1a

>u+
v2N+1a

>A−1a. Comparing expression y>B−1y and x>A−1x, we only need to prove the

inequality : α ≥ a>A−1a. For this, consider the block vector z =

(
A−1a
−1

)
. Since B is

positive, z>Bz = a>A−1a− 2a>A−1a+ α = α− a>A−1a ≥ 0.

Lemma 2. For any h ∈ HN , ‖h‖E ≤ c‖h‖HN
, where c is a constant independent of N .

Proof. For x ∈ X, we have

|h(x)| = |(h,KN(., x))HN
| ≤ ‖h‖HN

×
√
KN(x, x),

where KN(x, x) =
∑N

i,j=0K(uN,i, uN,j)φN,i(x)φN,j(x). Since
∑N

i,j=0 φN,i(x)φN,j(x) = 1, we
obtain

0 ≤ sup
x∈X

KN(x, x) ≤M = max
x,x′∈X

|K(x, x′)|,

which completes the proof of the lemma.
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4 Numerical illustration

The aim of this section is to illustrate the correspondence established in previous sections
between the MAP estimator and the constrained interpolation function solution of prob-
lem (P ). We are interested in the case where the real function f respects boundedness
constraints. Thus, the convex set C is equal to :

C =
{
f ∈ C0 ([0, 1]) : −∞ ≤ a ≤ f(x) ≤ b ≤ +∞, x ∈ [0, 1]

}
.
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Figure 1: Unconstrained and constrained mean together with the maximum a posteriori
(MAP) estimator using the constrained model. The lower and upper bounds are equal to
−25 and 20 (Figure 1a) and equal to −25 and 30 (Figure 1b).

Now, we suppose that f is evaluated at n = 4 design points (see Figure 1) with values
in the interval ] − 25, 20[ (Figure 1a) and ] − 25, 30[ (Figure 1b). In both figures, the
Gaussian covariance function is used which is defined as

K(x, x′) := σ2 exp

(
−(x− x′)2

2θ2

)
,

where the hyper-parameters (σ, θ) are fixed to (25, 0.2). In Figure 1a, we choose N = 50
and generate 100 sample paths taken from the finite-dimensional approximation of Gaus-
sian processes (8) conditionally to interpolation conditions and boundedness constraints,
where the lower and upper bounds are respectively -25 and 20 (the R package ‘constrK-
riging’ is used in the simulation, see [6] for more details). Notice that the sample paths
of the conditional Gaussian process (gray solid line) respect the boundedness constraints
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Figure 2: 1000 sample paths taken from the Gaussian process (gray solid line) respecting
boundedness constraints between -25 and 60. The unconstrained mean, the mean and the
maximum a posteriori coincide.

in the entire domain unlike the unconstrained mean (2). In Figure 1b, we just relax the
boundedness constraints such that the unconstrained mean respects it. In that case, the
unconstrained mean coincides with the MAP estimator but not with the mean of the sim-
ulation (i.e. posterior mean). Hence, in the constrained case, the mean of the posterior
distribution does not correspond to the optimal interpolation function.

In Figure 2, we also relax the boundedness constraints such that they do not have an
impact on the model. In that case, the unconstrained mean, the mean and the maximum
of the posterior distribution coincide as expected.

5 Conclusion

In this paper, the correspondence between two approaches to solve an interpolation problem
in the case of linear inequality constraints is established. On the first hand, a deterministic
approach leads to solve a constrained optimization problem under both interpolation con-
ditions and inequality constraints in a Hilbert space. On the second hand, a probabilistic
approach considers an estimation problem in a Bayesian framework. In the case of a finite-
dimensional Gaussian process, the correspondence between the MAP estimator (maximum
of the posterior distribution) and the constrained interpolation function is proved. In the
infinite-dimensional case, the correspondence is done by finite-dimensional approximation
and convergence of the MAP estimator to the constrained interpolation function. This
result can be seen as a generalization of the correspondence established by Kimelford and
Wahba in [3] between Bayesian estimation on stochastic process and curve fitting.
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