Differential uniformity and second order derivatives for generic polynomials - Archive ouverte HAL
Article Dans Une Revue Journal of Pure and Applied Algebra Année : 2018

Differential uniformity and second order derivatives for generic polynomials

Résumé

For any polynomial $f$ of ${\mathbb F}_{2^n}[x]$ we introduce the following characteristic of the distribution of its second order derivative, which extends the differential uniformity notion: $$\delta^2(f):=\max_{\substack{ \alpha \in {\mathbb F}_{2^n}^{\ast} ,\alpha' \in {\mathbb F}_{2^n}^{\ast} ,\beta \in {\mathbb F}_{2^n} \\ \alpha\not=\alpha'}} \sharp\{x\in{\mathbb F}_{2^n} \mid D_{\alpha,\alpha'}^2f(x)=\beta\}$$ where $D_{\alpha,\alpha'}^2f(x):=D_{\alpha'}(D_{\alpha}f(x))=f(x)+f(x+\alpha)+f(x+\alpha')+f(x+\alpha+\alpha')$ is the second order derivative. Our purpose is to prove a density theorem relative to this quantity, which is an analogue of a density theorem proved by Voloch for the differential uniformity.
Fichier principal
Vignette du fichier
Aubry_Herbaut_170320.pdf (226.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01266567 , version 1 (20-03-2017)

Identifiants

Citer

Yves Aubry, Fabien Herbaut. Differential uniformity and second order derivatives for generic polynomials. Journal of Pure and Applied Algebra, 2018, 222 (5), pp.1095-1110. ⟨10.1016/j.jpaa.2017.06.009⟩. ⟨hal-01266567⟩
472 Consultations
236 Téléchargements

Altmetric

Partager

More