Sur le modèle stochastique SIS pour une épidémie dans un environnement périodique
Résumé
n dem stochastichen SIS Modell f ̈ur eine Epidemie mit einer Kontaktrate a , mit einer Heilungsrate b < a und mit einer Bev ̈olkerungszahl N
ist der Erwartungswert τ der Zeit bis zum Unterbruch der Epidemie so, daß (log τ) /N nach c = b/a−1−log(b/a) konvergiert wenn N unendlich wird.
Dieser Artikel behandelt den mehr realistischen Fall, wo die Kontaktrate a (t) eine periodische Funktion ist, dessen Mittelwert größer als b ist. Dann konvergiert (log τ) /N nach einen neuen Grenzwert C, der mit einer periodischen Hamilton-Jacobi Gleichung gebunden ist. Wenn a (t) eine Kosinus-funktion mit einer kleinen Amplitude, mit einer großen Freq uenz oder mit einer kleinen Frequenz ist, kann man ann ̈ahernde analytisc
he Formel für C erhalten, mit Hilfe der Methode von [Assaf et al. (2008) Phys Rev E 78, 041123]. Diese Resultate werden mit numerischen Simula
tionen veranschaulicht.
Dans le modèle stochastique SIS pour une épidémie avec un taux de contact a, un taux de guérison b < a et une taille de population N , le temps moyen jusqu'à extinction τ est tel que (log τ)/N converge vers c = b/a − 1 − log(b/a) lorsque N tend vers l'infini. Cet article considère le cas plus réaliste où le taux de contact a(t) est une fonction périodique dont la moyenne est supérieure à b. Alors (log τ)/N converge vers une nouvelle limite C, qui est liée à une équation de Hamilton-Jacobi périodique en temps. Lorsque a(t) est une fonction cosinus avec une petite amplitude, avec une grande fréquence ou avec une fréquence très petite, on peut obtenir des formules approchées pour C de manière analytique en suivant la méthode utilisée par [Assaf et coll. (2008) Population extinction in a time-modulated environment. Phys Rev E 78, 041123]. Ces résultats sont illustrés par des simulations numériques.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...