Hadamard states for the Klein-Gordon equation on Lorentzian manifolds of bounded geometry - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré Année : 2017

Hadamard states for the Klein-Gordon equation on Lorentzian manifolds of bounded geometry

Christian Gérard
  • Fonction : Auteur
  • PersonId : 869047
Omar Oulghazi
  • Fonction : Auteur
  • PersonId : 975849
Michał Wrochna

Résumé

We consider the Klein-Gordon equation on a class of Lorentzian manifolds with Cauchy surface of bounded geometry, which is shown to include examples such as exterior Kerr, Kerr-de Sitter and Kerr-Kruskal spacetimes. In this setup, we give an approximate diagonalization and a microlocal decomposition of the Cauchy evolution using a time-dependent version of the pseu-dodifferential calculus on Riemannian manifolds of bounded geometry. We apply this result to construct all pure regular Hadamard states (and associated Feynman inverses), where regular refers to the state's two-point function having Cauchy data given by pseudodifferential operators. This allows us to conclude that there is a one-parameter family of elliptic pseudodifferential operators that encodes both the choice of (pure, regular) Hadamard state and the underlying spacetime metric.
Fichier principal
Vignette du fichier
pdo-calculus-bounded-geom.pdf (788.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01265079 , version 1 (30-01-2016)
hal-01265079 , version 2 (08-01-2017)
hal-01265079 , version 3 (04-03-2017)

Identifiants

Citer

Christian Gérard, Omar Oulghazi, Michał Wrochna. Hadamard states for the Klein-Gordon equation on Lorentzian manifolds of bounded geometry. Annales de l'Institut Henri Poincaré, 2017, 18 (8), pp.2715-2756. ⟨10.1007/s00023-017-0573-2⟩. ⟨hal-01265079v3⟩
287 Consultations
238 Téléchargements

Altmetric

Partager

More