Hadamard states for the Klein-Gordon equation on Lorentzian manifolds of bounded geometry
Résumé
We consider the Klein-Gordon equation on a class of Lorentzian manifolds with Cauchy surface of bounded geometry, which is shown to include examples such as exterior Kerr, Kerr-de Sitter and Kerr-Kruskal spacetimes. In this setup, we give an approximate diagonalization and a microlocal decomposition of the Cauchy evolution using a time-dependent version of the pseu-dodifferential calculus on Riemannian manifolds of bounded geometry. We apply this result to construct all pure regular Hadamard states (and associated Feynman inverses), where regular refers to the state's two-point function having Cauchy data given by pseudodifferential operators. This allows us to conclude that there is a one-parameter family of elliptic pseudodifferential operators that encodes both the choice of (pure, regular) Hadamard state and the underlying spacetime metric.
Origine | Fichiers produits par l'(les) auteur(s) |
---|