Fuzzy co-clustering with automated variable weighting - Archive ouverte HAL
Ouvrages Année : 2015

Fuzzy co-clustering with automated variable weighting

Charlotte Laclau
Francisco de A.T. de Carvalho
  • Fonction : Directeur scientifique
  • PersonId : 845635
Mohamed Nadif

Résumé

We propose two fuzzy co-clustering algorithms based on the double Kmeans algorithm. Fuzzy approaches are known to require more computation time than hard ones but the fuzziness principle allows a description of uncertainties that often appears in real world applications. The first algorithm proposed, fuzzy double Kmeans (FDK) is a fuzzy version of double Kmeans (DK). The second algorithm, weighted fuzzy double Kmeans (W-FDK), is an extension of FDK with automated variable weighting allowing co-clustering and feature selection simultaneously. We illustrate our contribution using Monte Carlo simulations on datasets with different parameters and real datasets commonly used in the co-clustering context.
Fichier non déposé

Dates et versions

hal-01262893 , version 1 (27-01-2016)

Identifiants

Citer

Charlotte Laclau, Francisco de A.T. de Carvalho, Mohamed Nadif (Dir.). Fuzzy co-clustering with automated variable weighting. 2015, ⟨10.1109/FUZZ-IEEE.2015.7337802⟩. ⟨hal-01262893⟩

Collections

LIPADE UP-SCIENCES
51 Consultations
0 Téléchargements

Altmetric

Partager

More