Multi-shot SURF-based person re-identification via sparse representation
Résumé
We present in this paper a multi-shot human re-identification system from video sequences based on SURF matching. Our contribution is about the matching step which is crucial. In this context, we propose a new method of SURF matching via sparse representation. Each SURF Interest Point in the test sequence is represented by a sparse representation of SURFs points in the reference dataset. For efficiency purposes, a dynamic dictionary is selected for each SURF from this dataset through KD-Tree Neighborhood search. Then a majority vote rule is applied to classify the test sequence. This approach is evaluated on two public datasets : PRID-2011 and CAVIAR4REID. The experimental results show that our approach compares favorably with and outperforms current state-of-the-art on the two datasets by 1% to 7%.