ERGODIC THEOREMS WITH ARITHMETICAL WEIGHTS - Archive ouverte HAL
Article Dans Une Revue Israel Journal of Mathematics Année : 2017

ERGODIC THEOREMS WITH ARITHMETICAL WEIGHTS

Résumé

We prove that the divisor function d(n) counting the number of divisors of the integer n, is a good weighting function for the pointwise ergodic theorem. For any measurable dynamical system (X, A, ν, τ) and any f ∈ L p (ν), p > 1, the limit lim n→∞ 1 n k=1 d(k) n k=1 d(k)f (τ k x) exists ν-almost everywhere. The proof is based on Bourgain's method, namely the circle method based on the shift model. Using more elementary ideas we also obtain similar results for other arithmetical functions, like the θ(n) function counting the number of squarefree divisors of n and the generalized Euler totient function Js(n) = d|n d s µ(n d), s > 0.
Fichier principal
Vignette du fichier
CW[revised]-bis.pdf (498.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01261291 , version 1 (25-01-2016)

Identifiants

Citer

Christophe Cuny, Michel Weber. ERGODIC THEOREMS WITH ARITHMETICAL WEIGHTS. Israel Journal of Mathematics, 2017, 217 (1), pp.139-180. ⟨10.1007/s11856-017-1441-y⟩. ⟨hal-01261291⟩
115 Consultations
545 Téléchargements

Altmetric

Partager

More