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ERGODIC THEOREMS WITH ARITHMETICAL WEIGHTS

CHRISTOPHE CUNY AND MICHEL WEBER

Abstract. We prove that the divisor function d(n) counting the number of divisors of the

integer n, is a good weighting function for the pointwise ergodic theorem. For any measurable

dynamical system (X,A, ν, τ) and any f ∈ Lp(ν), p > 1, the limit

lim
n→∞

1∑n
k=1 d(k)

n∑
k=1

d(k)f(τkx)

exists ν-almost everywhere. The proof is based on Bourgain’s method, namely the circle method

based on the shift model. Using more elementary ideas we also obtain similar results for other

arithmetical functions, like the θ(n) function counting the number of squarefree divisors of n
and the generalized Euler totient function Js(n) =

∑
d|n d

sµ(n
d

), s > 0.

1. Introduction

Let (X,A, ν, τ) be a measurable dynamical system. Birkhoff’s pointwise ergodic theorem states
that for any f ∈ L1(ν), the limit

lim
n→∞

1

n

n−1∑
k=0

f(τkx) = f̄(x)

exists ν-almost everywhere and in L1(ν), and f̄ =
∫
fdν if τ is ergodic. This fundamental

result was the object of many generalizations or extensions. We are interested in this article
in extensions of weighted type, more particularly in extensions in which the weights are built
with standard arithmetical functions, typically the divisor function d(n), counting the number of
divisors of the integer n. This is the most standard example of multiplicative arithmetical function
(see the definition below), but the reason to focus on this particular type of weights lies on deeper
considerations. A first motivation lies in a recent result of Berkes, Müller and Weber [2], Theorem
3. Recall a basic notion. We note throughout by a∧ b the greatest common divisor of the positive
integers a and b.

Definition 1.1. A function h : N → C is multiplicative (resp. additive) if for every m,n ∈ N
with m ∧ n = 1, h(mn) = h(m)h(n) (resp. h(mn) = h(m) + h(n)).

Theorem A. Let h be a non-negative multiplicative function and let H(n) =
∑n
k=1 h(k), n ≥ 1.

Assume that there are positive constants C1, C2, C3, C4 and a > 1 such that

(i)
∑
p≤x

h(p)a log p ≤ C1x, (ii)
∑
p,ν≥2

h(pν)a log pν

pν
≤ C2, (iii)

∑
p≤x

h(p) log p ≥ C3x for x ≥ C4.

Let X1, X2, . . . be i.i.d. integrable random variables.Then limn→∞
1

H(n)

∑n
k=1 h(k)Xk

a.s.
= EX1.

As a consequence, the weighted strong law of large numbers holds with h(n) = d(n) (and even
for h(n) = d(nl)α with l ≥ 1 integer and real α > 0). Theorem A is obtained by showing that
the combinatorial criterium of Jamison, Orey and Pruitt [15] is satisfied under the above set of
conditions. Note the arithmetical nature of the assumptions made. Even in the particular case of
the divisor function, the proof goes through elaborated arithmetical analysis.

This work was partly carried out during the first author’s visit to Ben-Gurion University, supported by its
Center for Advanced Studies in Mathematics, and also during his invitation at the IRMA Institute, Strasbourg,

and during the second author’s visit at the Department of Mathematical Sciences, Trondheim, Norway.
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Similar results are also obtained for complex valued additive functions (see also Berkes-Muëlle-
Weber [3]. In particular, the conclusion of Theorem A holds when h(n) is either of the following:{

ω(n) :=
∑
p|n,p∈P 1;

Ω(n) :=
∑
p|n,p∈P p.

Our goal is to study whether the a.s. convergence in Theorem A still holds when Xk = f ◦ τk
(f ∈ Lp(ν)) for either of the above mentionned choices of h as well as for other natural arithmetical
functions that we shall describe later.

Introduce the necessary notations. For a sequence (wk)k≥1 of real numbers (weights) such that
Wn :=

∑n
k=1 |wk| 6= 0 and Wn →∞, we define the weighted averages

Aτnf :=
1

Wn

n∑
k=1

wkf ◦ τk.

We are interested in their almost everywhere convergence.

We say that (wk)k≥1 is a good weight for the dominated ergodic theorem in Lp, p ≥ 1, if there
exists Cp > 0 such that for every (ergodic) dynamical system (X,A, ν, τ) and every f in Lp,

(1.1)
∥∥∥ sup
n≥1

|
∑

1≤k≤n wkf ◦ τk|
Wn

∥∥∥
p
≤ Cp‖f‖p .

We say that (wk)k≥1 is a good weight for the weak dominated ergodic theorem in Lp, p ≥ 1, if
there exists Cp > 0 such that for every (ergodic) dynamical system (X,A, ν, τ) and every f in Lp,

(1.2)
(

sup
λ>0

λpµ
{
‖ sup
n≥1

|
∑

1≤k≤n wkf ◦ τk|
Wn

≥ λ
})1/p

≤ Cp‖f‖p .

We also say that (wk)k≥1 is a good weight for the pointwise ergodic theorem in Lp, p ≥ 1, if
for every (ergodic) dynamical system (X,A, ν, τ) and every f in Lp,

(
(
∑

1≤k≤n wkf ◦ τk)/Wn

)
n

converges ν-a.s. Alternatively, when the weights are generated by an arithmetical function w, we
say that w is a good weighting function.

Before stating our results, let us introduce few arithmetical functions. We refer the reader for
instance to the classical book of Hardy and Wright [13] for an introduction to arithmetical functions
used here, and related results concerning their order of magnitude. For an easy introduction to
the Dirichlet convolution, we also refer to [19], which further contains many examples and results.
Using properties of the Dirichlet convolution, it will also follow that the above result remains true
for other arithmetical weights. Recall that the Möbius function µ(n) is defined by

(1.3) µ(n) =


1 if n = 1,

0 if p2|n,

(−1)k if n = p1 . . . pk.

Let λ(n) := (−1)Ω(n) be the Liouville function. For every s ∈ R, let σs(n) :=
∑
d|n d

s the function

sum of s-th powers of divisors. Let θ(n) be the multiplicative function counting the number
of squarefree divisors of n, and let Js(n) be the generalized Euler totient function. Recall that
θ(k) = 2ω(k) and Js(n) =

∑
d|n d

sµ(nd ). The classical Euler totient function J(n) counting the

number of integers k less than n and such that k ∧ n = 1 corresponds to the case s = 1.
Theorems 1.2 and 1.3 below are based on elementary arguments from ergodic theory combined

with results and/or arguments from number Theory, hence do not make use of Bourgain’s method.
For the proof of Theorem 1.2, see Theorem 3.8 and Corollary 2.4. For the proof of Theorem 1.3,
see Theorem 2.5 (and the remark after it). Let us notice that the conclusion of Theorem 1.2 has
been first obtained by El Abdalaoui, Kulag-Przymus, Lemanczyk and de la Rue [11] in the case
of µ and by Rosenblatt and Wierdl [21] in the case of |µ| (see remark 3.9 below).

Theorem 1.2. The functions µ, λ and |µ|, the functions Js, s > 0, and the function σs, s 6= 0
are good weighting functions for the dominated ergodic theorem in Lp, p > 1, the weak dominated
ergodic theorem in L1 and the pointwise ergodic theorem.
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Theorem 1.3. The functions ω and Ω are good weighting functions for both the dominated ergodic
theorem and the pointwise ergodic theorem in Lp, p > 1.

In the next Theorem, the proof in the case of the divisor function d rely on Bourgain’s method.
Then, the result for the function θ is derived from the one for d combined with one of our elementary
result. For the proofs, see Theorem 3.11 and Section 8.

Theorem 1.4. The divisor function d and the function θ are good weighting functions for both
the dominated ergodic theorem and the pointwise ergodic theorem in Lp, p > 1.

Remark 1.5. A natural question concerns the validity in L1 of the last two theorems. We strongly
believe that Theorem 1.4 for instance, is no longer true in L1, and further (basing us notably on
the negative L1-result for the ergodic theorem along the primes see LaVictoire [18]) that a proof
of this should be very difficult.

Our work follows the general principles of ergodic theory, which we briefly recall (see for instance
[25, Chapter 5]). Let 1 ≤ p <∞. By the Banach principle, the set

F =
{
f ∈ Lp(ν) : (Aτnf)n≥1 converges ν − almost everywhere

}
is closed in Lp(ν), if and only if there exists a non-increasing function C : R+ → R+, with
limα→∞ C(α) = 0, and such that for any α ≥ 0 and any f ∈ Lp(ν),

ν
{

sup
n≥1
|Aτnf | > α‖f‖p

}
≤ C(α).

If τ is ergodic and p > 1, by the continuity principle C(α) = O(α−p). The study thus amounts to
establishing a maximal inequality and to exhibit a dense subset of Lp(ν) for which the convergence
almost everywhere already holds.

The paper is organized as follows. In Section 2, we derive from the dominated and the point-
wise ergodic theorem (in Lp, p > 1) several weighted ergodic theorems where the weights are
mainly additive arithmetical functions. We use a Theorem of Delange [9] and the Turán-Kubilius
inequality (see e.g. [24]), as well as the result of Davenport and of Bateman and Chowla for the
case of the Möbius and Liouville functions respectively.

In Section 3, we consider the following problem. Given a good weighting function a and another
arithmetical function b, we study the conditions under which the Dirichlet convoluted function a∗b
is again a good weighting function. We recall that a ∗ b is defined by a ∗ b(n) =

∑
d|n a(d)b(n/d).

After having first proved some lemmas a bit in the spirit of Wintner’s theorem, we obtain in
Proposition 3.4, a general condition showing a kind of conservation property for the dominated
ergodic theorem under the action of the Dirichlet convolution product. We next apply it and
show that the sum of s-powers of divisors of k, s 6= 0, the number of squarefree divisors of k,
the generalized Euler totient function and the modulus of Möbius function are good weighting
functions for the dominated ergodic theorem in Lp, p > 1, and for the pointwise ergodic theorem
in Lp, p ≥ 1.

In section 4, Bourgain’s approach is briefly described, essentially the key steps are presented. In
section 5, several estimates concerning the divisor exponential sums Dn(x) =

∑
1≤k≤n d(k)e2ikπx

are proved, depending on the proximity of x to rationals with small or large denominators. We
proceed rather simply and will not for instance use Voronöı’s identity, nor need elaborated
estimates.

In the two next sections, we apply Bourgain’s approach. In Section 6, we use Fourier analysis to
establish maximal inequalities related to auxiliary kernels. In Section 7, we explain how to derive
good approximation results with suitable Fourier kernels to which we can apply the previous
maximal inequalities. Theorem 1.4 is proved in section 8.

2. Derivation Results from Birkhoff’s Theorem.

For a sequence (an)n≥1, define also Ãn := An/n. We have the following automatic dominated
ergodic theorems.
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Lemma 2.1. Let (an)n≥1 be a sequence of non-negative numbers. Assume that there exists C > 0

and m > 1 such that for every n ≥ 1,
∑n
k=1 a

m
k ≤ CnÃmn . Then, for every r > m/(m − 1),

(an)n≥1 is good for the dominated ergodic theorem in Lr. Moreover, (an)n≥1 is good for the weak

dominated ergodic theorem in Lm/(m−1).

Proof. Let (X,A, ν, τ) be a dynamical system and let f ∈ Lr(ν), for some r ∈ [m/(m− 1),+∞].
By Hölder inequality, we have, with m′ := m/(m− 1)∣∣ n∑

k=1

akf ◦ τk
∣∣ ≤ ( n∑

k=1

amk
)1/m ( n∑

k=1

|f ◦ τk|m
′)1/m′ ≤ C1/sn1/sÃn

( n∑
k=1

|f ◦ τk|m
′)1/m′

= C1/sAn

( 1

n

n∑
k=1

|f ◦ τk|m
′
)1/m′

.

The results follow from the dominated ergodic theorems for the usual ergodic averages. �

We now give a version of Lemma 2.1 corresponding to the case where m =∞.

Lemma 2.2. Let (an)n≥1 be a sequence of non-negative numbers. Assume that there exists C > 0

such that for every n ≥ 1, max1≤k≤n ak ≤ CÃn. Then, for every r > 1, (an)n≥1 is good for
the dominated ergodic theorem in Lr. Moreover, (an)n≥1 is good for the weak dominated ergodic
theorem in L1.

Remark 2.3. Lemmas 2.1 and 2.2 do not apply to the divisor function. To see it, first notice

that if ak = d(k) then Ãn ∼ log n, whereas (see [13], Th. 317) lim supn→∞
log d(n)

logn/ log logn = log 2.

Hence, Lemma 2.2 does not apply. Now, by Wilson [27, p. 242], for every integer m ≥ 1,∑n
k=1 d(k)m ∼ Cn(log n)2m−1) and Lemma 2.1 does not apply.

Proof. By assumption, for every f ∈ L1(ν), we have∣∣ n∑
k=1

akf ◦ τk
∣∣ ≤ An

n

n∑
k=1

|f ◦ τk| ,

and the result follows. �

Corollary 2.4. Let (an)n≥1 be a sequence of non-negative numbers. Assume that there exists
m > 1 such that

n∑
k=1

|ak − Ãn|m = o
(
nÃmn

)
.

Then, for every r > m/(m− 1), (an)n≥1 is good for both the dominated and the pointwise ergodic
theorem in Lr. Moreover, (an)n≥1 is good for both the weak dominated and the pointwise ergodic

theorem in Lm/(m−1).

Proof. Using that amk ≤ 2m−1(Ãmn + |ak − Ãn|m), we see that there exists C > 0 such that for

every n ≥ 1
∑n
k=1 a

m
k ≤ CnÃmn , and Lemma 2.1 applies. By the Banach principle, we just have

to prove the pointwise convergence for bounded functions. Let (X,A, ν, τ) be a dynamical system
and let f ∈ L∞(ν). Let K ≥ 0 be such that f ≤ K ν-a.s.

We have, by Hölder

|
n∑
k=1

(ak − Ãn)f ◦ τk| ≤ Kn1−1/m(

n∑
k=1

|ak − Ãn|m)1/m = o(nÃn) ,

and the result follows. �

Theorem 2.5. Let (g(n))n≥1 be an additive function with values in N and such that g(p) = 1 for
every prime number p. Assume moreover that there exists β > 0, such that for every ν ≥ 1 and
every prime number p,

(2.1) g(pν) ≤ βν log p.
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Then (g(n))n≥1 is a good weight for both the dominated and pointwise ergodic theorem in Lp,
p > 1.

Remark 2.6. It follows from the proof that for every real number m ≥ 1, (g(n)m)n≥1 is a good
weight for the dominated ergodic theorem in Lp, p > 1. When m is an integer, it is also a good
weight for the pointwise ergodic theorem in Lp, p > 1. The theorem applies in particular with
g(n) = ω(n) and g(n) = Ω(n).

Proof. Let us recall the following corollary of a deep result of Delange [9]. The corollary corre-
sponds to Theorem 2 (p. 132) with ν = m and χ ≡ 1, provided that (9) in [9] be satisfied. We
shall check this below.

Theorem 2.7. Let (g(n))n≥1 be as in Theorem 2.5. For every integer m ≥ 1, we have∑
1≤n≤x

g(n)m = x(log log x)m +O(x(log log x)m−1)) .

We see that the assumptions of Lemma 2.1 are satisfied for every integer m ≥ 1. Hence we
have the dominated ergodic theorem.

Let us prove the pointwise convergence of the weighted averages. It suffices to prove the
convergence for bounded functions. Let (X,A, ν, τ) be a dynamical system. Let f ∈ L∞(ν), with
|f | ≤ A. We agree to denote here and in what follows log log x = log(log(2 + x)), x ≥ 1. We have

N∑
n=1

g(n)f ◦ τn = (log logN)

N∑
n=1

f ◦ τn +

N∑
n=1

(g(n)− log logN)f ◦ τn .(2.2)

By Theorem 2.7 and Birkhoff’s ergodic theorem, log logN∑
1≤k≤N g(k)

∑
1≤k≤N f ◦ τk converges ν-a.s. To

conclude it suffices to prove that the second term in (2.2) converges ν-a.s to 0.

By Cauchy-Schwarz’s inequality, we have∣∣ N∑
n=1

(g(n)− log logN)f ◦ τn
∣∣ ≤ A√N( N∑

n=1

(g(n)− log logN)2
)1/2

Using Theorem 2.7 with m = 1 and m = 2 and (g(n) − log logN)2 = g(n)2 − 2g(n) log logN +
(log logN)2, we see that there exists C > 0 such that

|
N∑
n=1

(g(n)− log logN)f ◦ τn| ≤ C
√
N(N log logN)1/2 = o(

∑
1≤n≤N

g(k)) ,

and the proof is completed. �

Let us prove under (2.1) that the condition (9) of [9] is satisfied. We have to prove that there

exists ρ > 1 and σ < 1 such that
∑
k≥2,p∈P

ρg(p
k)

pσk
< ∞. Take σ = 3/4 and ρ > 1 such that

γ := 2(σ − β log ρ) > 1. Notice that∑
k≥2

ρg(p
k)

pσk
≤
∑
k≥2

(ρβ log p

pσ
)k ≤ 1

pγ
1

1− 1/pγ/2
≤ 1

pγ
1

1− 1/2γ/2
,

and the desired result follows.

Theorem 2.8. Let g(n)n≥1 be an additive function such that( ∑
pα≤n

g(pα)2

pα

)1/2

= o
( ∑
pα≤n

g(pα)

pα

)
.

Then, (g(n)n≥1 is good for both the dominated and the pointwise ergodic theorem in Lp for every
p > 2.
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Proof. Recall the Turán-Kubilius inequality [24] p. 302. There exists an absolute constant C̃ such
that for any additive complex-valued arithmetic function f ,

1

n

n∑
k=1

∣∣f(k)−
∑
pα≤n

f(pα)

pα(1− p−1)

∣∣2 ≤ C̃ ∑
pα≤n

|f(pα)|2

pα
, (n ≥ 2).

Let γ(n) =
∑
pα≤n

g(pα)
pα(1−p−1) . By Cauchy-Schwarz’s inequality, next Turán-Kubilius inequality,∣∣∣ 1

n

n∑
k=1

(
g(k)− γ(n)

)∣∣∣2 ≤ 1

n

n∑
k=1

∣∣g(k)− γ(n)
∣∣2 ≤ C ∑

pα≤n

|g(pα)|2

pα
= o
(
|γ(n)|2

)
.

In particular, G̃(n) = 1
n

∑n
k=1 g(k) = γ(n) + H, where H = o(|γ(n)|). Writing H = hγ(n) with

|h| ≤ 1/2, if n is large, we have |γ(n)| ≤ |G̃(n)|/(1−|h|) ≤ 2|G̃(n)|, and by Minkowski’s inequality,( 1

n

n∑
k=1

∣∣g(k)− G̃(n)
∣∣2)1/2

= o
(
|γ(n)|

)
= o
(
|G̃(n)|

)
.

We conclude by applying Corollary 2.4. �

The case of Möbius and Liouville functions. Here we consider the ν-a.s. behaviour of the
sums

∑n
k=1 µ(k)f ◦ τk,

∑n
k=1 λ(k)f ◦ τk where µ is the Möbius function and λ is the Liouville

function. Recall that the Liouville function λ is given by λ(n) = (−1)Ω(n). We only treat the case
of the Möbius function, the arguments being quite identical for the Liouville function.

It is well-known (see e.g. Theorem 9 p. 46 of [24]) that
∑n
k=1 |µ(k)| ∼ 6

π2n. Hence, for both the
Möbius and the Liouville functions, when studying dominated and/or pointwise ergodic theorems,
it is enough to replace the normalizing function W (n) with n.

Let us recall the following result of Davenport [7] on the behaviour of the corresponding expo-
nential sums.

Proposition 2.9. For every h > 0 there exists Ch > 0 such that

sup
x∈[−1/2,1/2]

∣∣ n∑
k=1

µ(k)e2iπkx
∣∣ ≤ Chn

(log n)h
.

Remark 2.10. According to Lemma 1 in Bateman and Chowla [1], an analogous estimate holds
for the Liouville function.

By the spectral theorem (see e.g. [25], Proposition 1.2.2), we easily deduce the following.

Corollary 2.11. For every h > 0, there exists Ch > 0 such that for every f ∈ L2(ν)∥∥ n∑
k=1

µ(k)f ◦ τk
∥∥

2
≤ Chn

(log n)h
‖f‖2 .

Notice that, trivially, for f ∈ Lp(ν), 1 ≤ p ≤ ∞, we have ‖
∑n
k=1 µ(k)f ◦ τk‖p ≤ n‖f‖p. Hence,

performing interpolation between L1(ν) and L2(ν) on the one hand and between L2(ν) and L∞(ν),
on the other hand, we easily derive the following.

Corollary 2.12. For every h > 0 and every p > 1, there exists Ch,p > 0 such that or every
f ∈ Lp(ν)

(2.3) ‖
n∑
k=1

µ(k)f ◦ τk‖p ≤
Ch,pn

(log n)h
‖f‖p .

It is mentionned by Sarnak [22] that Bourgain’s approach allows to prove that for every f ∈
L2(ν), 1

n

∑n
k=1 µ(k)f ◦ τk −→

n→∞
0, ν-a.s. In view of (2.3), one could wonder whether we have a

rate in this ν-a.s. convergence. We shall prove the following.
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Proposition 2.13. For every h > 0 and every p > 1 there exists Ch,p > 0 such that for every
f ∈ Lp(ν), ∥∥ sup

n≥1

|
∑n
k=1 µ(k)f ◦ τk|
n/(log n)h

∥∥
p
≤ Ch,p‖f‖p .

In particular, for every h > 0, (logn)h

n

∑n
k=1 µ(k)f ◦ τk −→

n→∞
0.

Proof. Let p > 1 and h > 0. Let 0 < ε < p−1
p(1+h) . Let h′ > h+ 1/ε. Let f ∈ Lp(ν). Denote

Mn = Mn,h(f) :=
(log n)h

n

n∑
k=1

µ(k)f ◦ τk.

Denote also un := [en
ε

]. By Corollary 2.12, there exists Ch′,p such that, for every n ≥ 1,

‖Mn‖p ≤
Ch′,p

(log n)h′−h
‖f‖p .

In particular, we see that

‖ sup
n≥1
|Mun |‖pp ≤

∑
n≥1

‖Mun‖pp ≤ C‖f‖pp
∑
n≥1

1

npε(h′−h)
,

and the latter series converges by our choice of h′. Now let n ≥ 1 and un < m ≤ un+1. Write
m = un + k. We have, writing

∑m
i=1 =

∑un
i=1 +

∑m
i=un+1

|Mm| ≤ |Mun |+
Cnεh

un

un+1∑
i=un+1

|f | ◦ τ i

Hence,

max
un<m≤um+1

|Mm| ≤ |Mun |+
Cnεh

un

un+1∑
i=un+1

|f | ◦ τ i

≤ sup
`≥1
|Mu` |+ C

(∑
`≥1

(`εh
u`

u`+1∑
i=u`+1

|f | ◦ τ i
)p)1/p

.

Now, using that u`+1 − u` = O(u`/`
1−ε), we see that there exists C > 0 such that∥∥∥ u`+1∑

i=u`+1

|f | ◦ τ i
∥∥∥
p
≤ Cu`‖f‖p

`1−ε
.

Hence

‖ sup
m≥1
|Mm|‖p ≤ ‖ sup

`≥1
|Mu` |‖p + C‖f‖p

(∑
`≥1

1

`p(1−ε(1+h))

)1/p

and the desired result follows since p(1− ε(1 + h)) > 1. �

Corollary 2.14. The Möbius function µ and the Liouville function λ both satisfy the weak dom-
inated ergodic theorem and the pointwise ergodic theorem in L1.

Proof. The weak dominated ergodic theorems are trivial. The pointwise ergodic theorems
then follow from the Banach principle (recalled in the introduction) and Proposition 2.13.

Remark 2.15. Corollary 2.14 has been proved by El Abdalaoui, Kulaga-Przymus, Lemanczyk
and De La Rue [11].
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3. Ergodic stability of the Dirichlet convolution.

Let us recall the following basic fact. Let a(n) and b(n) be two arithmetical functions with
summatory functions A(x) =

∑
n≤x a(n) and B(x) =

∑
n≤x b(n). Then∑

n≤x

a ∗ b(n) =
∑
n≤x

a(n)B(
x

n
) =

∑
n≤x

b(n)A(
x

n
) .

Recall that a function f : [0,+∞)→ (0,+∞) is slowly varying if for every K > 0,

lim
x→+∞

f(Kx)

f(x)
= 0 .

We start with a lemma a bit in the spirit of Wintner’s theorem [29] p. 180, and that should be
known from specialists in number theory.

Lemma 3.1. Let a(n) be a non-negative arithmetic function such that A(x) ∼ xαL(x) as x→∞,
for some α > 0 and some positive non-decreasing slowly varying function L. Let b(n) be an

arithmetic function such that
∑
n≥1

|b(n)|
nα <∞. Then

lim
n→∞

1

A(n)

n∑
k=1

b ∗ a(k) =

∞∑
m=1

b(m)

mα
.

Remark 3.2. Note that the above lemma (as well as the next one) does not apply to the divisor
function. Indeed, d = I ∗ I, and so one has to take α = 1 and b(n) ≡ 1.

Proof. Denote c(k) = b ∗ a(k). Let M ≥ 1 be an integer fixed for the moment. By assumption

x :=
∑
m≥1

b(m)
mα is well defined. Denote also xM :=

∑
m≥M+1

b(m)
mα .∣∣∣x− ∑

1≤k≤n

c(k)/A(n)
∣∣∣ ≤ ∑

1≤`≤M

∣∣∣b(`)
`α
− b(`)A(n/`)

A(n)

∣∣∣+ |xM |+
∑

M<`≤n

|b(`)|A(n/`)/A(n) .

By assumption, for every 1 ≤ ` ≤ M , A(n/`)/A(n) −→
n→∞

1/`α. Since L is positive and non-

decreasing, there exists C > 0 such that,

A(x) ≤ CxαL(x) ∀x ≥ 1 ,

A(n/`) ≤ C
nαL(n)

`α
∀n ≥ 1, ∀1 ≤ ` ≤ n .(3.1)

Hence
∑
M<`≤n |b(`)|A(n/`)/A(n) ≤ C nαL(n)

A(n)

∑
M<`≤n |b(`)|/`α, and so

lim sup
n→∞

∣∣∣ ∑
1≤k≤n

c(k)

A(n)
− x
∣∣∣ ≤ |xM |+ C

∑
`>M

|b(`)|
`α

.

As the right-term tends to 0 when M tends to infinity, this proves the result. �

Lemma 3.3. Let a(n) be a non-negative arithmetic function such that A(x) ∼ xα/(log x)β, as

x→∞, for some α, β > 0. Let b(n) be an arithmetic function such that
∑
n≥1

|b(n)|(logn)β

nα <∞.
Then

lim
n→∞

1

A(n)

n∑
k=1

b ∗ a(k) =

∞∑
m=1

b(m)

mα
.

Proof. We proceed as above, using the same notation. Let M ≥ 1 be a an integer fixed for the
moment. We have∣∣∣x− ∑

1≤k≤n

c(k)

A(n)

∣∣∣ ≤ ∑
1≤`≤M

∣∣∣b(`)
`α
− b(`)A(n/`)

A(n)

∣∣∣+ |xM |

+
∑

M<`≤
√
n

|b(`)|A(n/`)/A(n) +
∑

√
n<`≤n

|b(`)|A(n/`)/A(n) .
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Now, ∑
M<`≤

√
n

|b(`)|A(n/`)/A(n) ≤ C
∑
`>M

|b(`)|/`α ,

and ∑
√
n<`≤n

|b(`)|A(n/`)/A(n) ≤ (log n)β
∑
`>
√
n

|b(`)|/`α −→
n→∞

0 ,

by a result analogous to the Kronecker lemma. Then we conclude as above. �

Proposition 3.4. Let a(n) be a non-negative arithmetic function such that A(x) ∼ xαL(x), as
x → ∞, for some α > 0 and some non-decreasing slowly varying function L. Let b(n) be an
arithmetic function such that

∑
n≥1 |b(n)|/nα <∞,

∑
n≥1 b(n)/nα 6= 0 and a ∗ b(n) ≥ 0 for every

n ≥ 1. Let p > 1.

(i) Assume that a(n) satisfies to the dominated ergodic theorem in Lp. Then, a∗b(n) satisfies
to the dominated ergodic theorem either.

(ii) If moreover, a(n) satisfies to the pointwise ergodic theorem in Lp then a ∗ b(n) satisfies to
the pointwise ergodic theorem either.

Remark 3.5. If A(x) ∼ xα/(log x)β , as x→∞, for some β > 0, then the conclusion of the the-
orem holds as soon as

∑
n≥1 |b(n)|(log n)β/nα <∞ and

∑
n≥1 b(n)/nα 6= 0. When the pointwise

ergodic theorem holds, the limit may be identified for the weigth a ∗ b(n) whenever it is identified
for the weight a(n).

Proof. Let (X,A, ν, τ) be a dynamical system. Let f ∈ Lp(ν). By Lemma 3.1, it suffices to prove

a maximal inequality and the almost-everyhere convergence for
(∑

1≤k≤n c(k)f◦τk

A(n)

)
n≥1

, where, as

before, c(n) = a ∗ b(n).

Let us prove (i). Write

A` = A`(f) = sup
n≥1

|
∑

1≤k≤n a(k)f ◦ τ `k|
A(n)

.

By assumption, there exists C > 0 (independent on ` anf f) such that

(3.2) ‖A`‖p,ν ≤ C‖f‖p,ν .
Using (3.1), we see that

|
∑

1≤k≤n c(k)f ◦ τk|
A(n)

≤
∑

1≤`≤n b(`)|
∑

1≤k≤n/` a(k)f ◦ τ `k|
A(n)

≤
∑

1≤`≤n b(`)A(n/`)A`

A(n)
≤ C

∑
`≥1

|b(`)|
`α

A` .(3.3)

and we deduce the desired maximal inequality from (3.2) and the convergence of
∑
`≥1

|b(`)|
`α .

Let us prove (ii). By assumption, there exist functions (f`)`≥1, such that for every ` ≥ 1,(
(
∑

1≤k≤n a(k)f ◦ τ `k)/A(n)
)
n

converges ν-a.s. (and in Lp(ν)) to f`. Moreover, ‖f`‖p ≤ ‖f‖p.
Hence, g :=

∑
`≥1

b(`)
`α f` is well-defined in Lp and ν-a.s. Let us prove that∑

1≤k≤n

c(k)f ◦ τk)/A(n) −→
n→∞

g ν-a.s.

Let M ≥ 1 be an integer, fixed for the moment. We have∑
1≤k≤n

c(k)f ◦ τk =
∑

1≤`≤n

b(`)
∑

1≤k≤n/`

a(k)f ◦ τ `k

=
∑

1≤`≤M

b(`)
∑

1≤k≤n/`

a(k)f ◦ τ `k +
∑

M<`≤n

b(`)
∑

1≤k≤n/`

a(k)f ◦ τ `k .
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Let gM :=
∑
`≥M+1

b(`)
`α f`. We have∣∣∣ ∑

1≤k≤n

c(k)f ◦ τk/A(n)− g
∣∣∣ ≤ ∑

1≤`≤M

∣∣∣b(`)
`α

f` −
b(`)A(n/`)

A(n)

1

A(n/`)

∑
1≤k≤n/`

a(k)f ◦ τ `k
∣∣∣

+|gM |+
∑

M<`≤n

b(`)
∑

1≤k≤n/`

a(k)f ◦ τ `k .

Hence we infer that

(3.4) lim sup
n→∞

∣∣∣ ∑
1≤k≤n

c(k)f ◦ τk)/A(n)− g
∣∣∣ ≤ |gM |+ C

∑
`>M

b(`)

`α
A`(f) −→

M→∞
0 ν-a.s. ,

and the result follows. �

Before giving examples, we would like to show that the previous result has a L1,∞ (weak-L1)
version. Recall that f ∈ L1,∞ if and only if

‖f‖1,∞ := sup
λ>0

λν({x ∈ X : |f(x)| > λ}) <∞ .

The vector space L1
1,∞ equipped with ‖ · ‖1,∞ is not a normed-space, but we have the following

estimate due to Stein and Weiss [23, Lemma 2.3]. The form stated here is quoted from [10, Lemma
4].

Lemma 3.6. Let (gn)n∈N be functions in L1,∞(X,A, ν). Assume that∑
n∈N
‖gn‖1,∞ log+(1/‖gn‖1,∞) <∞.

Then the series
∑
n∈N gn converges ν-a.s. to an element of L1,∞(X,A, ν). Moreover, writing

L :=
∑
n∈N ‖gn‖1,∞ and K :=

∑
n∈N

‖gn‖1,∞
L log(L/‖gn‖1,∞), we have,∥∥∥∑

n∈N
gn

∥∥∥
1,∞
≤ 2(K + 2)L .

We say that (wk)k≥1 is a good weight for the dominated ergodic theorem in L1,∞, if there exists
C > 0 such that for every (ergodic) dynamical system (X,A, ν, τ) and every f in Lp,∥∥∥ sup

n≥1

|
∑

1≤k≤n wkf ◦ τk|
Wn

∥∥∥
1,∞
≤ Cp‖f‖1,∞ .

Proposition 3.7. Let a(n) be a non-negative arithmetic function such that A(n) ∼ nαL(n) for
some α > 0 and some non-decreasing slowly varying function L. Let b(n) be an arithmetic function
such that

∑
n≥1 |b(n)|/nα log+(nα/b(n)) <∞,

∑
n≥1 b(n)/nα 6= 0 and a∗b(n) ≥ 0 for every n ≥ 1.

(i) Assume that a(n) satisfies to the dominated ergodic theorem in L1,∞. Then, a ∗ b(n)
satisfies to the dominated ergodic theorem either.

(ii) If moreover, a(n) satisfies to the pointwise ergodic theorem in L1,∞ then a ∗ b(n) satisfies
to the pointwise ergodic theorem either.

Proof. The proof of the maximal inequality follows from (3.3) and Lemma 3.6. Let us prove the
pointwise ergodic theorem. As in the proof of Proposition 3.4, (3.4) holds true. Now, the sequence
(gM )M≥1 from the proof (part (ii)) of Proposition 3.4, converges ν-almost surely to 0. Moreover,

the non-increasing sequence
∑
`>M

b(`)
`α A`(f))M≥1 converges ν-a.s. and its limit must be 0, since,

by Lemma 3.6 it converges in probability to 0. �

We derive from the previous ”elementary” considerations the following theorem. Let us em-
phasize that this theorem do not rely at all on Bourgain’s method.
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Theorem 3.8. The arithmetical functions
σs(k) the sum of s-powers of divisors of k, s 6= 0,

Js(k) the generalized Euler totient function, s > 0,

|µ(k)| where µ is the Möbius function,

(3.5)

are good weighting functions for the dominated ergodic theorem in Lp, p > 1, and for the weak
dominated ergodic theorem in L1. Moreover, they are good weighting functions for the pointwise
ergodic theorem in Lp, p ≥ 1.

Remark 3.9. The result concerning the weighting function |µ| is known, and for a proof of both
the dominated and pointwise ergodic theorems, we refer to Exercise 6, Chapter III of [21].

Remark 3.10. We shall derive the dominated (and pointwise) ergodic theorems in the above
cases by means of Proposition 3.4. In particular, the limit in the pointwise ergodic theorems may
be identified. For the weights Js, s > 0 the limit is always the mean. For the weights σs, s 6= 0
and |µ|, if moreover τ is totally ergodic (i.e. all of its positive powers are ergodic), the limit is the
same as in Birkhoff’s ergodic theorem (i.e. the mean).

Finally, let us remark that it is possible to see that the dominated ergodic theorems follow in
a somewhat more direct way (than using Proposition 3.4) from Lemma 2.2 and Lemma 3.1 in the
following cases: |µ|, Js for every s > 0 and σs for every |s| > 1. However, the pointwise ergodic
theorems (with identification of the limit) cannot be derived so easily.

Proof. (i) Denote for s ∈ R and all integers n, ςs(n) = ns and let I = ς0. We have σs = I ∗ ςs. If
s < 0, using Birkhoff’s Theorem, we see that Proposition 3.4 applies well. Indeed take a(n) = 1,
b(n) = ns, α = 1. Obviously,

∑
n≥1 b(n)n−1 =

∑
n≥1 n

−1−|s| < ∞ and
∑
n≥1 b(n)n−1 6= 0. Thus

σs(n) are good weights for the pointwise ergodic theorem in Lp, p ≥ 1 and good weights for the
dominated ergodic theorem in Lp, p > 1. If s > 0, it is well-known (using Abel summation and
Birkhoff ergodic theorem) that for any f ∈ Lp(ν), p ≥ 1, 1

n1+s

∑
k≤n k

sf ◦τkf(x) converges almost

everywhere as n → ∞. We apply Proposition 3.4 with a(n) = ns, b(n) = 1, α = 1 + s. This
shows that σs(n) are good weights for the pointwise ergodic theorem in Lp, p > 1. They are also
good weights for the dominated ergodic theorem in Lp, p > 1, since 1

n1+s |
∑
k≤n k

sf ◦ τkf(x)| ≤
1
n

∑
k≤n |f ◦ τkf(x)|.

(ii) Recall that Js(n) = ςs ∗ µ(n) =
∑
d|n d

sµ(nd ). The proof is very similar to the one of the

case σs(n) = ns, s > 0. We use the fact that (ks), s ∈ R, is a good weighting sequence and apply

Proposition 3.4 with a(n) = ns, b(n) = µ(n), α = 1 + s, noticing that
∑
n≥1

µ(n)
n1+s = 1

ζ(1+s) 6= 0.

(iii) Let us now consider the arithmetical function |µ|. Introduce the arithmetical functions

δ(n) =

{
1 n = 1,

0 unless.
µ̃(n) =

{
µ(d) n = d2,

0 unless.

Recall the fundamental inversion formula δ = I ∗ µ. Writing n = qm2, where q is the product of
those prime factors of n with odd exponents, we first notice that

µ(n)2 = µ(m2)2 = δ(m) = I ∗ µ(m) =
∑
d2|n

µ(d) =
∑
u|n

µ̃(u) = I ∗ µ̃(n)

since d|m if and only if d2|n. The conclusion thus follows from Proposition 3.4 and Birkhoff’s

theorem since µ(n)2 = I ∗ µ̃(n) and
∑
n≥1

|µ̃(n)|
n <∞. �

The next theorem is a combination of our elementary results and Theorem 1.4. In particular,
it relies on Bourgain’s method and is not elementary.

Theorem 3.11. The arithmetical function θ := |µ| ∗ I is a good weighting function for both the
dominated and the pointwise ergodic theorem in Lp, p > 1.
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Proof. Since d = I ∗ I,

θ(n) =
∑
d|n

|µ(d)| =
∑
d|n

µ(d)2 =
∑
d|n

I ∗ µ̃(d) = I ∗ I ∗ µ̃(n) = d ∗ µ̃(n).

Moreover,
∑
n≥1

|µ̃(n)|
n ≤

∑
n≥1

1
n2 < ∞ and

∑
n≥1

µ̃(n)
n =

∑
n≥1

µ(n)
n2 = 1

ζ(2) 6= 0 . Then, the

result follows from Proposition 3.1 and Theorem 1.4. �

4. Sketch of Bourgain’s approach.

Before passing to the preparation of the proof of Theorem 1.2, it is necessary to briefly recall the
essential steps of Bourgain’s method. We refer ourselves to [6]. The basic reduction (Calderon’s
transference principle) to the shift model (Z, S), where Sz = {z`+1, ` ∈ Z}, z = {z`, ` ∈ Z} can be
presented as follows. Let (X,α, µ, τ) be a measurable dynamical system and let 1 < p ≤ ∞. Let
J,N be positive integers with J � N . Let f ∈ Lp(µ), x ∈ X and define ϕ on Z by

ϕ(j) =

{
f(τ jx) if 0 ≤ j ≤ J ,

0 otherwise.

We note that

Aτnf(τ jx) =
1

Wn

n−1∑
k=0

wk(Skϕ)(j), n ≤ N, 0 ≤ j < J −N.

Hence ∑
0≤j<J−N

N
sup
n=1
|Aτnf(τ jx)| ≤

∑
0≤j<J−N

N
sup
n=1

∣∣∣ 1

Wn

n−1∑
k=0

wkS
kϕ(j)

∣∣∣.
Assume that we have proved that∥∥∥ sup

n≥1

∣∣ 1

Wn

n−1∑
k=0

wkS
kg(j)

∣∣∥∥∥
`p(Z,dj)

≤ Cp‖g‖`p(Z,dj),(4.1)

for any g ∈ `p(Z). Taking g = ϕ we deduce,∑
0≤j<J−N

N
sup
n=1
|Aτnf(τ jx)|p ≤ Cpp

∑
0≤j≤J

|f(τ jx)|p.

By integrating with respect to µ, it follows that∑
0≤j<J−N

∥∥∥ N
sup
n=1
|Aτnf ◦ τ j |

∥∥∥p
p
≤ Cpp

∑
0≤j≤J

‖f ◦ τ j‖pp.

Since τ is µ-preserving, this finally leads to∥∥ sup
n≥1
|Aτnf |

∥∥
p
≤ C(p)‖f‖p.

Consider the kernel Kn : `p(Z)→ `p(Z) defined by

Kn =
1

Wn

n−1∑
k=0

wkδ{k}.

By Fourier inversion formula, the maximal inequality on the shift model∥∥ sup
n∈N
|Kn ∗ f |

∥∥
p
≤ C‖f‖p,

is equivalent to ∥∥∥ sup
n∈N

∣∣ ∫ 1

0

K̂n(t)f̂(t)e2iπjtdt
∣∣∥∥∥
`p(Z,dj)

<∞.
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The latter is obtained by first proving a maximal inequality relatively to another kernel Ln, whose
Fourier transform is close to that of Kn, by using Fourier analysis, and next establishing an
approximation result of the type

(4.2) ‖K̂n − L̂n‖∞ ≤
C

(log n)b
∀n ≥ 2

where b is some positive constant. In several situations (in particular, when wn = dn), in order to
deduce the maximal inequality for Kn, there is no loss to assume that f ≥ 0 and to restrict n to
dyadic values (n = 2k, k ∈ N). The plain inequality

sup
k∈N
|f ∗K2k | ≤ sup

k∈N
|f ∗ L2k |+

(∑
k∈N
|f ∗ (K2k − L2k)|2

)1/2
implies since ‖f ∗ (K2k − L2k‖2 ≤ ‖K2k − L2k‖∞‖f‖2,∥∥ sup

k∈N
|f ∗K2k |

∥∥
2
≤
∥∥ sup
k∈N
|f ∗ L2k |

∥∥
2

+
(∑
k∈N
‖K2k − L2k‖2∞

)1/2‖f‖2.
Now let ρ > 1 and denote Iρ := {[ρn] : n ∈ N}. The convergence almost everywhere will result

from the inequality: for every ρ > 1 and every sequence (Nj)j≥1, with Nj+1 ≥ 2Nj ,

(4.3)
∑

1≤j≤J

∥∥∥ sup
Nj≤N≤Nj+1

N∈Iρ

|Anf −ANjf |
∥∥∥

2
≤ o(J)‖f‖2,

for J large depending on ρ. Consequently, once the reduction to the shift model operated, the
main steps in applying Bourgain’s approach are summarized in (4.2) and (4.3), see (7.12) and
Theorem 7.5. The next sections are devoted to the necessary preparatory steps for the application
of this method.

Remark 4.1 (Maximal shift inequality). It is well-known that for the Cesáro kernel κn :=
1
n

∑n−1
k=0 δ{k}, for every p > 1, there exists Cp > 0 such that

‖ sup
n≥1
|κn ∗ g‖`p ≤ Cp‖g‖`p ∀g ∈ `p .

The proof goes as follows. The above maximal shift inequality writes (after variable change),

∑
i∈Z

sup
j≥i

1

j − i+ 1

∣∣∣ j∑
l=i

g(l)
∣∣∣p ≤ Cpp∑

i∈Z
|g(i)|p.(4.4)

It suffices to prove it for g ≥ 0. Assume first that support(g) = Z−. Then the only sums playing
a role are those with i ≤ j ≤ −1 and the left-term writes

∑
δ≥1

sup
1≤γ≤δ

( 1

δ − γ + 1

δ∑
u=γ

g(−u)
)p
.

Applying Hardy and Littlewood maximal inequality ([12], Theorem 8, see also [14] Th. 326),

(4.5)

∞∑
j=1

max
1≤i≤j

( 1

j − i+ 1

j∑
l=i

al

)p
<
( p

p− 1

)p ∞∑
n=1

apn (an ≥ 0),

shows that (4.4) is realized with Cp = p/(p − 1). Now if support(g) = (−∞,M ], we apply the
previous estimate to g̃(k) = g(k + M) whose support is Z−. To pass to the general case, we use
monotone convergence theorem (letting M tend to +∞), which is justified since g ≥ 0.



14 CHRISTOPHE CUNY AND MICHEL WEBER

5. Divisors estimates.

Recall that the divisor function is defined by d(n) := #{1 ≤ d ≤ n : d|n}. For every x ∈ [0, 1],
define

Dn(x) :=
∑

1≤k≤n

d(k)e2ikπx.

Then

Dn(x) =
∑

1≤k`≤n

e2ik`πx = 2
∑

1≤k≤
√
n

∑
1≤`≤n/k

e2ik`πx −
∑

1≤k,`≤
√
n

e2ik`πx

:= D̃n(x)−
∑

1≤k,`≤
√
n

e2ik`πx

It is well-known that

Dn := Dn(0) = n(log n+ 2γ − 1) +O(n1/3)) ,(5.1)

where γ is the Euler constant. Better estimates of the error term exist, but we shall not need them.
Several asymptotics for (Dn(x))n may be found in Jutila [17] when x is rational or in Wilton [28]
for general x under conditions on the continuous fractions expansion of x.

We shall need quantitative asymptotics according to the fact that x is close to rational numbers
with small or large denominators. In particular, it is unclear how to derive the results that we
need from the above mentionned papers.

Our estimates use very simple ideas and we do not make use of the Voronoi identity related to

the problem. Actually, we shall rather estimate D̃n(x).

Lemma 5.1. There exists C > 0, such that for every 1 ≤ a ≤ q with a ∧ q = 1, or a = 0, q = 1,
and every n ≥ 1, we have

(5.2) |Dn(a/q)− n

q
(log n− 2 log q + 2γ − 1)| ≤ C(

√
n+ q) log(q + 1)) .

Proof. The case a = 0, q = 1 follows from (5.1).

1. Assume first that q ≤
√
n. We split the sum defining D̃n according to the fact that k is a

multiple of q or not. We use the following obvious facts.
– If q|k, we have ∑

1≤`≤n/k

e2ik`πa/q = [n/k].

– If there exists 1 ≤ s ≤ q − 1, such that k ≡ s mod q, we have

|
∑

1≤`≤n/k

e2ik`πa/q| ≤ 2

|1− e2isπa/q|

Now, there are [
√
n/q] multiple of q less than

√
n and for every 1 ≤ s ≤ q − 1, there are at most

[
√
n/q] integers smaller than

√
n and congruent to s mod q.

Notice that s→ as is a bijection of Z/qZ−{0} and that there exists C > 0, such that for every
1 ≤ s′ ≤ q − 1,

2

|1− e2iπs′/q|
≤ Cq

min(s′, q − s′)
.

Hence, writing Γn := {1 ≤ k ≤
√
n : k /∈ qZ},

|
∑
k∈Γn

∑
1≤`≤n/k

e2ik`πa/q| ≤ [
√
n/q]

∑
1≤s≤q/2

Cq

s
≤ C̃
√
n log(q + 1) .

Recall (see for instance Tenenbaum [24] page 6) that there exists a universal constant C > 0,
such that for every n ≥ 1,

(5.3)
∣∣ ∑

1≤m≤n

1

m
− log n− γ

∣∣ ≤ C

n
,
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where γ is Euler’s constant.

Then, using that | log(
√
n
q )− log(

[√
n
q

]
) ≤ 2q√

n
, we infer that,

D̃n(a/q) = 2
∑

1≤m≤[
√
n/q]

n/(mq) + O(
√
n log(q + 1))

=
n

q
(log n− 2 log q + 2γ) + O(

√
n) + O(

√
n log(q + 1)) ,

where the ”big O” are uniform in the parameters.

Similar computations give,∑
1≤k,`≤

√
n

e2iπk`π aq =
n

q
+O(

√
n log(q + 1)) .

2. Assume now that q >
√
n. We use a similar reasonning as above. In that case no integer k,

1 ≤ k ≤
√
n, is a multiple of q and {ak : 1 ≤ k ≤

√
n} is a set of integers with distinct residues

modulo q.

Hence,

|Dn(a/q)| ≤
∑

1≤k≤
√
n

2

|1− e2iπka/q| ≤ C
∑

1≤|`|≤q/2

2q

|`|
≤ Cq log(q + 1) .

Similarly, ∣∣∣ ∑
1≤k,`≤

√
n

e2ik`π aq

∣∣∣ ≤ Cq log(q + 1) .

Now, since q >
√
n, we see that n

q | log n − 2 log q + 2γ − 1| ≤ Cq log(q + 1), and the lemma is

proved. �

Now let (Pn)n≥1 and (Qn)n≥1 be non-decreasing sequences of integers, such that for every
n ≥ 1, 1 ≤ Pn ≤ Qn ≤ n.

Lemma 5.2. Let 1 ≤ a ≤ q ≤ Pn with a ∧ q = 1, or a = 0, q = 1. Let x ∈ [0, 1] be such that
|x− a/q| ≤ 1/Qn. There exists some universal constant C > 0 such that, for every n ≥ 1,∣∣∣Dn(x)− 1

q

∑
1≤k≤n

log k e2ikπ(x−a/q) − 2(γ − 1− log q)

q

∑
1≤k≤n

e2iπk(x−a/q)
∣∣∣(5.4)

≤ C
(n3/2 log n

Qn
+
nPn log n

Qn

)
.

In particular, there exists C̃ > 0, such that, for every n ≥ 1,∣∣∣Dn(x)− log n

q

∑
1≤k≤n

e2ikπ(x−a/q)
∣∣∣ ≤ C̃(n+

n3/2 log n

Qn
+
nPn log n

Qn

)
.(5.5)

Remark 5.3. The simpler estimate (5.5) will allow us to prove the oscillation inequality in L2(µ).

If Kn = 1
Dn

∑
1≤k≤n d(k)δ{k} and kn = logn

Dn

∑
1≤k≤n δ{k}, it will provide (upon suitable choice of

Pn, Qn) the estimate ∣∣Kn(x)− 1

q
kn(x− a/q)

∣∣ ≤ C

log n
.

It is also sufficient to prove the maximal inequality in Lp(µ) for 3/2 < p ≤ 2. However, (5.4)
seems to be needed to prove the maximal inequality for 1 < p ≤ 2.
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Proof. We have, writing Rn := n
q (log n− 2 log q + 2γ − 1) and R0 = 0,

Dn(x) =
∑

1≤k≤n

d(k)e2iπkx =
∑

1≤k≤n

d(k)e2iπka/qe2iπk(x−a/q)

=
∑

1≤k≤n

(
d(k)e2iπka/q − (Rk −Rk−1)

)
eik(x−a/q)

+
∑

1≤k≤n

(Rk −Rk−1)e2iπk(x−a/q)

:= Tn + Un .

Notice that

q(Rk −Rk−1) = k log k − (k − 1) log(k − 1)− 2 log q + 2γ − 1

= log k − 2 log q + 2γ − 2 + O(1/k) .

Hence,

qUn =
∑

1≤k≤n

log k e2iπk(x−a/q) + 2(γ − 1− log q)
∑

1≤k≤n

e2iπk(x−a/q) +O(log n) .

To deal with Tn we use Abel summation by part. Recall that by Lemma 5.1, for every 1 ≤ k ≤ n,
|Dk(a/q)−Rk| ≤ C

√
k(log k + log(q + 1)). We have

Tn =
∑

1≤k≤n

(
(Dk(a/q)−Rk)− (Dk−1(a/q)−Rk−1)

)
e2iπk(x−a/q)

=
∑

1≤k≤n

(Dk(a/q)−Rk)e2iπk(x−a/q)(1− e2iπ(x−a/q)) + (Dn(a/q)−Rn)e2iπ(n+1)(x−a/q).

Hence,

|Tn| ≤ |Dn(a/q)−Rn|+
C

Qn

∑
1≤k≤n

|Dk(a/q)−Rk| ≤ C
n3/2 log n

Qn
.

Let us prove (5.5). Clearly, it suffices to handle the first term in (5.4). We have

∣∣∣ ∑
1≤k≤n

log k e2iπk(x−a/q) − log n
∑

1≤k≤n

e2iπk(x−a/q)
∣∣∣ ≤ ∑

1≤k≤n

| log(k/n)| ≤ n
∫ 1

0

| log t|dt ,

which finishes the proof. �

Lemma 5.4. Let x ∈ [0, 1] be such that for every 1 ≤ q ≤ Pn and every 0 ≤ a ≤ q, |x − a/q| >
1/Qn. There exists some absolute constant C > 0 such that

|Dn(x)| ≤ C
(n log n

Pn
+
√
n log n+Qn log n+

n2 log n

PnQn

)
.

Proof. By the Dirichlet principle, there exists 1 ≤ a ≤ q with a ∧ q = 1, such that |x − a/q| ≤
1/(qQn) ≤ 1/Qn. By assumption, we must have q > Pn, hence we have

|x− a/q| ≤ 1

PnQn
.

Then, using that |e2ipkx− e2iπka/q| ≤ |1− e2iπk(x−a/q)| ≤ 2πk|x− a/q| ≤ 2πk/(PnQn), we infer
that

|Dn(x)−Dn(a/q)| ≤ 2π

PnQn

∑
1≤k≤n

kd(k) ≤ C̃ n2 log n

PnQn
.

To conclude, we use Lemma 5.1, noticing that q ≥ Pn. �
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6. Maximal inequalities in `p

In this section we recall some results of Fourier analysis that may be found in [26], see also [5]
or [6] for related results.

In all that section, we denote by η : R→ [0, 1] a (fixed) smooth function such that

(6.1) η(x) =


1 if x ∈ [− 1

4 ,
1
4 ]

0 if x ∈ R\[−1/2, 1/2]

is C∞ on [−1/2, 1/2]\[− 1
4 ,

1
4 ].

Further, (wn)n≥1 will be a sequence of elements of `1(Z) such that for every p > 1, there exists
Cp(ω) > 0 such that

(6.2) ‖ sup
n≥1
|wn ∗ g| ‖`p(Z) ≤ Cp(w)‖g‖`p(Z) ∀g ∈ `p(Z) .

We follow here the approach of Wierdl [26]. However, as it has been noticed very recently by
Mirek and Trojan [20], there is a small gap in Wierdl’s argument (on should have qp instead of q
in the equation after ∗∗ page 331), hence we shall sketch some of the proofs. Our first lemma is
just equation (24) of Wierdl [26], which is independent from the gap.

Lemma 6.1. There exists M > 2 (depending solely on η) such that for every p > 1, there exists
Cp > 0 such that for every Q > 1 and every 1 ≤ d ≤ Q/M and every h ∈ `p(Z) we have

(6.3)
∥∥∥ sup

n

∣∣∣ ∫ 1/2

−1/2

ŵn(x)η(Qx)ĥ(x)e2iπdjx dx
∣∣∣ ∥∥∥
`p(Z,dj)

≤ CpCp(w)

d1/p
‖h‖`p ,

Our second lemma is the corrected version of Lemma 3′ of Wierdl [26]. The term d1−1/p does
not appear in Lemma 3′. Since we shall apply Lemma 6.2 for p close to 1, it will turn out that
this extra term will not be disturbing.

Lemma 6.2. There exists M > 2 (depending solely on η) such that for every p > 1, there exists
Cp > 0 such that for every Q > 1, every g ∈ `p(Z),∥∥∥ sup

n

∣∣∣ ∑
1≤m≤d

∫ 1/2

−1/2

ŵn(x)η(Qx)ĝ(m/d+ x)e2iπj(m/d+x) dx
∣∣∣ ∥∥∥
`p(Z,dj)

≤ CpCp(w)d1−1/p‖g‖`p ,

whenever 1 ≤ d ≤ Q/M .

Proof. We proceed as in Wierdl [26]. We first assume that g has finite support, i.e. there exists

N > 0, such that g(k) = 0 whenever |k| > N . We have ĝ(m/d + x) =
∑N
k=−N g(k)e2ikπ(m/d+x).

Notice that
∑

1≤m≤d e2iπ(k+j)m/d = d if d|(k+ j) and 0 otherwise. Hence, for every x ∈ [1/2, 1/2]
and every j ∈ Z, writing j = td+ r with 1 ≤ t ≤ d, we have∑

1≤m≤d

ĝ(m/d+ x)e2iπj(m/d+x) =

N∑
k=−N

g(k)e2iπ(k+j)x
∑

1≤m≤d

e2iπ(k+j)m/d

= d
∑
s∈Z

g(sd− j)e2iπsdx

= de2iπtdx
∑
s∈Z

g(sd− r)e2iπsdx

Define ĥd,r ∈ `p(Z) (with finite support) by its Fourier transform:

ĥd,r(x) := d
∑
s∈Z

g(sd− r)e2iπsdx .

Then, using Lemma 6.1, we infer that∥∥∥ sup
n

∣∣∣ ∑
1≤m≤d

∫ 1/2

−1/2

ŵn(x)η(Qx)ĝ(m/d+ x)e2iπj(m/d+x) dx
∣∣∣ ∥∥∥p
`p(Z,dj)
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=
∑

1≤r≤d

∥∥∥ sup
n

∣∣∣ ∫ 1/2

−1/2

ŵn(x)η(Qx)ĥd,r(x)e2iπdtx dx
∣∣∣ ∥∥∥p
`p(Z,dt)

≤ CpCp(w)

d

∑
1≤r≤d

‖hd,r‖p`p(Z) .

By construction, ‖hd,r‖p`p(Z) = dp
∑
s∈Z g(sd − r)p. Hence,

∑
1≤r≤d ‖hd,r‖

p
`p(Z) = dp‖g‖p`p(Z), and

the result follows. The case where g has no finite support may be deduced by approximation. �

Lemma 6.3. There exists M > 2 (depending solely on η) and C > 0 such that for every Q > 1,
every g ∈ `2(Z),∥∥∥ sup

n

∣∣∣ ∑
1≤m≤d

∫ 1/2

−1/2

ŵn(x)η(Qx)ĝ(m/d+ x)e2iπj(m/d+x) dx
∣∣∣ ∥∥∥
`2(Z,dj)

≤ CC2(w)‖g‖`2 ,

whenever 1 ≤ d ≤ Q/M .

Proof. We have

∆ :=
∥∥∥ sup

n

∣∣∣ ∑
1≤m≤d

∫ 1/2

−1/2

ŵn(x)η(Qx)ĝ(m/d+ x)e2iπj(m/d+x) dx
∣∣∣ ∥∥∥2

`2(Z,dj)

=
∑
j∈Z

sup
n

∣∣∣ ∑
1≤m≤d

∫ 1/2

−1/2

ŵn(x)η(Qx)ĝ(m/d+ x)e2iπj(m/d+x) dx
∣∣∣2.

For 1 ≤ r ≤ d, define gr by

ĝr(x) =
∑

1≤m≤d

ĝ(m/d+ x)e2iπr(m/d+x).

Splitting the previous series into d series according with the residue class of j mod d we see that

∆ =
∑

1≤r≤d

∑
j∈Z

sup
n

∣∣∣ ∫ 1/2

−1/2

ŵn(x)η(Qx)ĝr(x)e2iπjdx dx
∣∣∣2

Notice that η(Q2 ·)η(Q·) = η(Q·). By Lemma 6.1 applied with ĥ(x) = η(Q2 x)ĝr(x), we have, by
Parseval ∑

j∈Z
sup
n

∣∣∣ ∫ 1/2

−1/2

ŵn(x)η(Qx)ĝr(x)e2iπjdx dx
∣∣∣2 ≤ C2

d

∫ 1/2

−1/2

|η(
Q

2
x)ĝr(x)|2dx .

Now,

|η(
Q

2
x)ĝr(x)|2 = η2(

Q

2
x)

∑
1≤m,m′≤d

ĝ(m/d+ x)ĝ(m′/d+ x)e2iπr(m−m′)/d .

Hence, using that
∑

1≤r≤d e2iπr(m−m′)/d is equal to 0 if m 6= m′ and to d if m = m′, we obtain
that ∑

1≤r≤d

|η(
Q

2
x)ĝr(x)|2 = η2(

Q

2
x)

∑
1≤m,m′≤d

ĝ(m/d+ x)ĝ(m′/d+ x)
∑

1≤r≤d

e2iπr(m−m′)/d

= η2(
Q

2
x)

∑
1≤m≤d

|ĝ(m/d+ x)|2 .

Then, we infer that,

∆ ≤ C2
2

∑
1≤m≤d

∫ 1/2

−1/2

(η(
Q

2
x))2|ĝ(m/d+ x)|2 dx

= C2
2

∑
1≤m≤d

∫ 1/2

−1/2

(η(
Q

2
(x−m/d)))2|ĝ(x)|2 dx.
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But, if M > 2, the functions (η(Q2 (· −m/d)))1≤d≤Q/m have disjoint supports. Hence,

∆ ≤ C2
2‖g‖2`2 ,

and the proof is complete. �

For every s ≥ 0, define ηs by

(6.4) ηs(x) = η(4sMx),

where M is a constant such that Lemma 6.1 and Lemma 6.3 apply.

Corollary 6.4. Let p > 1. For every ε > 0, there exists Cp > 0 such that for every s ≥ 1 and
every 1 ≤ q < 4s and every g ∈ `p(Z),∥∥∥ sup

n

∣∣∣ ∑
1≤a≤q,a∧q=1

∫ 1/2

−1/2

ŵn(x)ηs(x)ĝ(a/q + x)e2iπj(a/q+x) dx
∣∣∣ ∥∥∥
`p(Z,dj)

≤ CpCp(w)q1+ε−1/p‖g‖`p .

If p = 2,∥∥∥ sup
n

∣∣∣ ∑
1≤a≤q,a∧q=1

∫ 1/2

−1/2

ŵn(x)ηs(x)ĝ(a/q + x)e2iπj(a/q+x) dx
∣∣∣ ∥∥∥
`2(Z,dj)

≤ C2C2(w)qε‖g‖`2 .

Proof. As we have for any function on R,
∑n
k=1 F ( kn ) =

∑
q|n
∑

1≤a≤q
a∧q=1

F (aq ), it follows from Möbius

inversion formula that

(6.5)
∑

1≤a≤q,a∧q=1

F (a/q) =
∑
d|q

µ(q/d)
∑

1≤m≤d

F (m/d).

Let 1 ≤ q < 2s. Recall that (see e.g. Tenenbaum [24] p. 83) there exists c > 0 such that∑
d|q

|µ(d)| = 2ω(q) ≤ 2c
log q

log log q = O(qε),

where ω(q) is the number of prime divisors of q.

We shall apply (6.5) with F (md ) =
∫ 1/2

−1/2
ŵn(x)η(Qx)ĝ(m/d + x)e2iπj(m/d+x) dx. We combine

it with Lemma 6.2 with Q = 4sM if p 6= 2 and Lemma 6.3 if p = 2. �

We shall now deal with families of sequences (wn)n≥1 rather than with a single sequence. In
particular,

(
(wn,q)n≥1

)
q≥1

will be a family of elements of `1(Z), such that for every p > 1, there

exists Cp > 0 such that for every integer s ≥ 1, there exists Ks such that,

(6.6) ‖ sup
n≥1
|wn,q ∗ g| ‖`p(Z) ≤ CpKs‖g‖`p(Z) ∀g ∈ `p(Z) ,∀2s−1 ≤ q < 2s.

Corollary 6.5. There exists C > 0 such that for every s ≥ 1, every g ∈ `2(Z) and every family(
(wn,q)n≥1

)
2s−1≤q<2s

of elements of `1(Z) satisfying (6.6), we have∑
2s−1≤q<2s

∥∥∥ sup
n

∣∣∣ ∑
1≤a≤q,a∧q=1

∫ 1/2

−1/2

ŵn,q(x)ηs(x)ĝ(a/q + x)e2iπj(a/q+x) dx
∣∣∣ ∥∥∥
`2(Z,dj)

≤ CKs2
(ε+1/2)s ‖g‖`2 .

Proof. For every s ≥ 1, ηs−1 ≡ 1 on [−1/(M4s), 1/(M4s)], hence ηs−1ηs = ηs. Moreover the
functions {x→ ηs−1(x− a/q)}2s−1≤q<2s,1≤a≤q,a∧q=1 have disjoint supports.

Indeed, let s ≥ 1, 2s−1 ≤ q < 2s and 1 ≤ a ≤ q. Let x ∈ [0, 1] be such that ηs(x − a/q) > 0.
Then, |x− a/q| ≤ 1

2·4sM and if 2s−1 ≤ q′ < 2s and 1 ≤ a′ ≤ q′, we have

(6.7) |x− a′/q′| ≥ |a/q − a′/q′| − |x− a/q| ≥ 1

2 · 4s
− 1

4sM
≥ 1

2 · 4sM
.
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Hence ηs(x− a′/q′) = 0. In particular, writing

ĝq(x) =
∑

1≤a≤q

ηs−1(x− a

q
)ĝ(x),

we see that∑
1≤a≤q,a∧q=1

wn,q(x−
a

q
)ηs(x−

a

q
)ĝ(x)e2iπjx =

∑
1≤a≤q,a∧q=1

wn,q(x−
a

q
)ηs(x−

a

q
)ĝq(x)e2iπjx .

Applying Corollary 6.4 and using that ‖gq‖`2 = ‖ĝq‖2, we infer that∑
2s−1≤q<2s

∥∥∥ sup
n

∣∣∣ ∑
1≤a≤q,a∧q=1

∫ 1/2

−1/2

wn,q(x)ηs(x)ĝ(a/q + x)e2iπj(a/q+x) dx
∣∣∣ ∥∥∥
`2(Z,dj)

≤ CKs2
εs

∑
2s−1≤q<2s

‖ĝq‖2 ≤ CKs2
(ε+1/2)s (

∑
2s−1≤q<2s

‖ĝq‖22)1/2

= CKs2
(ε+1/2)s

( ∑
2s−1≤q<2s

∑
1≤a≤q,a∧q=1

∫ 1

0

|ĝ(x)|2η2
s−1(x− a/q)dx

)1/2

≤ CKs2
(ε+1/2)s‖g‖`2 ,

where we used the above mentionned disjointness. �

Corollary 6.6. Let p > 1. For every δ > 1/p, there exists Cp,δ > 0 such that for every s ≥ 1 and
every g ∈ `p(Z),
(6.8)∥∥∥ ∑

2s−1≤q<2s

sup
n

∣∣∣ ∑
1≤p≤q,a∧q=1

∫ 1/2

−1/2

ŵn,q(x)ηs(x)ĝ(a/q+x)e2iπj(a/q+x) dx
∣∣∣ ∥∥∥
`p(Z,dj)

≤ Cp,δKs2
sδ‖g‖`p .

Remark 6.7. Notice that the sum is inside the norm that time.

Proof. Let s ≥ 1. Consider the following sub-additive and bounded (by Corollaries 6.4 and 6.5)
operators on `r(Z), 1 < r ≤ 2:

Ls(g) =
∑

2s−1≤q<2s

sup
n

∣∣∣ ∑
1≤a≤q,a∧q=1

∫ 1/2

−1/2

ŵn,q(x)ηs(x)ĝ(a/q + x)e2iπj(a/q+x) dx
∣∣∣ .

Let 1 < p < 2 and chose any r ∈ (1, p). Let λ ∈ (0, 1) be the unique real number such that
1/p = λ/r + (1− λ)/2.

By the Marcinkiewicz interpolation theorem (see e.g. Zygmund [30, Th 4.6, Ch. XII, Vol. II]),
there exists Cp,r > 0 such that

‖Lsg‖`p ≤ Cp,rKs2
s(2+ε−1/r)λ2(1−λ)(ε+1/2)s ‖g‖`p = Cp,r2

s[1+ε−1/r)λ+(1−λ)ε]2(1+λ)s/2 ‖g‖`p .

Taking r close enough to 1, we may assume that 1 + ε− 1/r)λ+ (1− λ)ε ≤ 3ε.

Notice that λ = r(2−p)
p(2−r) and that (1 + λ)/2 = r+p−rp

p(2−r) −→r→1
1/p. The result follows since ε may

be taken arbitrary small. �

7. Approximation result

In this section, we explain how to derive from the estimates on exponential sums, good ap-
proximation results with suitable Fourier kernels to which we can apply the previous maximal
inequalities.
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7.1. We use the notation (6.1), (6.4). Let 0 < τ ≤ 1 be a parameter to be chosen later. Assume
that we have a collection (ψn,q)n≥1,q≥0 of complex-valued 1-periodic functions on R such that
there exists C > 0 such that for every x ∈ [−1/2, 1/2]

|ψn,q(x)| ≤ C

(q + 1)τ
min(1,

1

n|x|
) .(7.1)

Let (Pn)n≥1 and (Qn)n≥1 be two non-decreasing sequences of integers. Assume that there exist
R,S > 1 such that for every n ≥ 2,

Pn ≥ R(log n)S/τ and 16MP 2
n ≤ Qn ≤

n

(log n)S(1+1/τ)
.(7.2)

In particular,

(7.3) Qn ≥ 16MPn ≥ 16MR(log n)S/τ ≥ (log n)S/τ .

Denote

M(Pn, Qn) = Mn := {x ∈ [0, 1] : ∃ 0 ≤ a ≤ q ≤ Pn : |x− a/q| ≤ 1/Qn} .

Notice that, because of (7.2), if x ∈Mn, x 6= 0, there exist unique numbers an(x) and qn(x) with
1 ≤ an ≤ qn and an∧qn = 1 and such that |x−an(x)/qn(x)| ≤ 1/Qn. Let us also define an(0) = 0
and qn(0) = 1.

Finally, define functions ϕn on [0, 1] by

(7.4) ϕn(x) := ψn,0(x)η0(x) +

∞∑
s=1

∑
2s−1≤q<2s

∑
1≤a≤q,a∧q=1

ψn,q(x− a/q)ηs(x− a/q) .

Notice that for any fixed s, the functions

x 7→ ηs(x− a/q), 2s−1 ≤ q < 2s, 1 ≤ a ≤ q, a ∧ q = 1,

have disjoint supports. Hence, by (7.1) the series defining (ϕn)n≥1 are uniformly convergent.

We shall need the following technical lemma, which is essentially due to Bourgain.

Lemma 7.1. Let (Tn)n≥1 be complex-valued functions on [0, 1], such that there exists C > 0 and
γ > 0 such that for every n ≥ 2,

|Tn(x)− ψn,qn(x− an/qn)| ≤ C

(log n)γ
∀x ∈Mn(7.5)

|Tn(x)| ≤ C

(log n)γ
∀x ∈ [0, 1]\Mn .(7.6)

Then, there exists C̃ > 0 such that for every n ≥ 2 and every x ∈ [0, 1],

(7.7) |Tn(x)− ϕn(x)| ≤ C̃

(log n)min(γ,S)
.

Proof. 1. We start with the case where x ∈ [0, 1]\Mn. By (7.6), it suffices to estimate |ϕn|. By
assumption, min(x, 1− x) ≥ 1

Qn
. Hence,

|ψn,0(x)| ≤ CQn
n
≤ C

(log n)S(1+1/τ)
.

By Dirichlet’s principle, there exists 1 ≤ a ≤ q ≤ Qn, with a ∧ q = 1 such that

|x− a

q
| ≤ 1

qQn
.
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Let 1 ≤ a′ ≤ q′ with a′ ∧ q′ = 1 and a′/q′ 6= a/q. Then, if q′ ≤ (logn)S/τ

2 , using (7.2) and (7.3), we
have

|x− a′

q′
| ≥ 1

qq′
− 1

qQn
=

1

q
(

1

q′
− 1

Qn
) ≥ 1

q(log n)S/τ
≥ 1

Qn(log n)S/τ
≥ (log n)S

n
.

Hence, when q′ ≤ (logn)S/τ

2 ,

|ψn,q′(x−
a′

q′
)| ≤ C

(q′ + 1)τ (log n)S
.

So, using (7.4), we obtain

|ϕn(x)| ≤ 1

(log n)S(1+1/τ)
+ |ψn,q(x)|+ C

(log n)S

∑
s : 2s≤(logn)S/τ

2−sτ + C
∑

s : 2s≥(logn)S/τ

2−sτ .

Now, since x ∈ [0, 1]\Mn, q ≥ Pn and |ψn,q(x)| ≤ C/(q + 1)τ = O((log n)S). Hence the lemma is
proved in that case.

2. Assume now that x ∈ Mn. Suppose x 6= 0. By assumption, |x − an(x)/qn(x)| ≤ 1/Qn and
qn(x) ≤ Pn. Hence, if s ≥ 1, is such that 2s−1 ≤ qn(x) < 2s, we have

(7.8) |x− an(x)/qn(x)| ≤ 1/Qn ≤
8MP 2

n

Qn
.

1

8MP 2
n

≤ 1

2M4s
.

In particular, ηs(x− an(x)/qn(x)) = 1. If x = 0, η0(0) = 1.

Let 1 ≤ a′ ≤ q′ with a′ ∧ q′ = 1 and a′/q′ 6= a/q. Then, if q′ ≤ Pn, using (7.2)

|x− a′

q′
| ≥ 1

qn(x)q′
− 1

Qn
≥ 1

P 2
n

− 1

Qn
≥ 8M − 1

Qn
,

and |ψn,q′(x− a′

q′ )| ≤
8M−1

(q′+1)τ (logn)S(1+1/τ) , by (7.2).

Finally, we obtain

|ϕn(x)− Tn(x)| ≤ C

(log n)γ
+

8M − 1

(log n)1+1/τ

∑
s : 2s≤Pn

2−τs + C
∑

s : 2s>Pn

2−τs ,

which proves the lemma in that case. �

7.2. Let us assume from now that there exists a sequence (wn,q)n≥1,q≥0 of elements of `1 such
that assumption (7.1) is satisfied with the choice

ψn,q = ŵn,q n ≥ 1, q ≥ 0.

Introduce the following assumption.

For every p > 1, there exists Cp > 0 such that

(7.9) ‖ sup
n≥1
|wn,q ∗ g|‖`p ≤

Cp
qτ
‖g‖`p ∀g ∈ `p .

Proposition 7.2. Let (Kn)n≥1 ⊂ `1, with supn≥1 ‖Kn‖`1 < ∞. Assume that Tn := K̂n satisfies
(7.5) and (7.6), for some γ > 1/2. Assume moreover that (7.9) holds. Then, for every p ∈
( 1
τ + 2−1/τ

2 min(γ,S) , 2], there exists Cp > 0, such that

‖ sup
n≥1
|K2n ∗ g|‖`p ≤ Cp‖g‖`p ∀g ∈ `p .

Remark 7.3. According to Section 4, Proposition 7.2 provides the maximal inequality for the
kernel Kn, and thereby in any measurable dynamical system.

For the proof, we will need the following Lemma. Let Ln be the inverse Fourier transform of
ϕn, which is made possible because of the introduction of the smooth function η.
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Lemma 7.4. For every p > 1/τ , there exists Cp > 0 such that for every g ∈ `p,

(7.10) ‖ sup
n≥1
|g ∗ Ln|‖`p ≤ Cp‖g‖`p .

Proof of Lemma 7.4. Let r > 1/τ . We apply Corollary 6.6 (as ψn,q = ŵn,q) to obtain that for
every δ > 1/r and every g ∈ `r,∥∥∥ ∑

2s−1≤q<2s

sup
n

∣∣∣ ∑
1≤p≤q,a∧q=1

∫ 1/2

−1/2

ŵn,q(x)ηs(x)ĝ(a/q + x)e2iπj(a/q+x) dx
∣∣∣ ∥∥∥
`r(Z,dj)

≤ Cr,δ2s(δ−τ)‖g‖`r .(7.11)

We may chose δ < τ , so that
∑
s≥0 2s(δ−τ) < ∞. Summing the estimates (7.11) over s ≥ 1 we

infer that for every g ∈ `r,

‖ sup
n≥1

∫ 1/2

−1/2

L̂n(x)ĝ(x)e2iπjx dx‖`r(Z) ≤ Cr‖g‖`r(Z) .

Taking inverse Fourier transform we see that Lemma 7.4 is true. �

Proof of Proposition 7.2. By Lemma 7.1, since (7.5) and (7.6) are satisfied, we see that (7.7) holds.
Hence, we have

(7.12) ‖K̂n − L̂n‖∞ ≤
C

(log n)min(γ,S)
∀n ≥ 2 .

Then, we infer that for every f ∈ `2(Z),

(7.13) ‖f ∗ (Kn − Ln)‖`2(Z) ≤
C

(log n)min(γ,S)
‖f‖`2(Z) ∀n ≥ 2 .

Let 2 > p > 1/τ , be fixed for the moment. Since supn≥1 ‖Kn‖`1(Z) ≤ C, we see that for every
n ≥ 1 and for every r ≥ 1 and g ∈ `r(Z) (using Young’s inequalities), ‖Kn ∗ g‖`r(Z) ≤ C‖g‖`r(Z).
Hence, by (7.13) and Lemma 7.4, we see that, for every n ≥ 0 and every r > 1/τ ,

‖K2n ∗ g − L2n ∗ g‖`2(Z) ≤ C

nmin(γ,S)
‖g‖`2(Z) ∀g ∈ `2(Z),

‖K2n ∗ g − L2n ∗ g‖`r(Z) ≤ Cr‖g‖`r(Z) ∀g ∈ `2(Z)

Let 1/τ < r < p. Interpolating, we deduce that there exists Cp,r such that for every n ≥ 0,

‖K2n ∗ g − L2n ∗ g‖`p(Z) ≤
Cr,p
nσ
‖g‖`r(Z) ∀g ∈ `p(Z) ,

with σ = 2γ̃(p−r)
p(2−r) and γ̃ = min(γ, S).

Notice that

σ − 1

p
=

1

p

(2γ̃(p− r)
2− r

− 1
)
−→
r→1/τ

2γ̃(p− 1/τ) + 1/τ − 2

p(2− 1/τ)
.

Since p > 1
τ + 2−1/τ

2 min(γ,S) , we may chose r close enough to 1/τ , such that σ > 1/p. In particular for

that choice,

‖ sup
n≥0
|K2n ∗ g −L2n ∗ g| ‖`p(Z) ≤

(∑
n≥0

‖K2n ∗ g −L2n ∗ g‖p`p(Z)

)1/p

≤ Cp,r‖g‖`p(Z) ∀g ∈ `p(Z) .

�
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7.3. We now establish an estimate of the type (4.3) in order to prove the convergence almost
everywhere. Recall that for ρ > 1, we have noted Iρ = {[ρn] : n ∈ N}. Introduce the following
assumption:

For every ρ > 1 and every sequence (Nj)j≥1, with Nj+1 ≥ 2Nj, there exists C > 0 such that,

(7.14)
∑
j≥1

‖ sup
Nj≤N≤Nj+1

N∈Iρ

|(wN,q − wNj ,q) ∗ g| ‖2`2(Z) ≤
C

qτ
‖g‖2 ∀g ∈ `2 .

Theorem 7.5. Let (Kn)n≥1 ⊂ `1. Assume that Tn := K̂n satisfies (7.5) and (7.6), for some
γ > 1/2. Assume moreover that (7.14) holds. Then, for every ρ > 1 and every sequence (Nj)j≥1,
with Nj+1 ≥ 2Nj,

(7.15)

J∑
j=1

‖ sup
Nj≤N≤Nj+1, N∈Iρ

|(KN −KNj ) ∗ g| ‖2`2(Z) = o(J) .

Remark 7.6. According to Section 4, the convergence almost everywhere now follows from The-
orem 7.5.

Proof. The proof follows closely the argument p. 220 in Bourgain [4]. Let ρ > 1. Let (Nj)j∈N ⊂ Iρ
be an increasing sequence with Nj+1 > 2Nj . For every j ∈ N, define a maximal operator by

Mjf = Mj,ρf := sup
Nj≤N<Nj+1, N∈Iρ

|f ∗KN − f ∗KNj | ∀f ∈ `2(Z).

As in the previous proof we define Ln as the inverse Fourier transform of ϕn. Notice that, for
every f ∈ `2(Z),

Mj ≤ sup
Nj≤N<Nj+1, N∈Iρ

|f ∗ LN − f ∗ LNj |+ 2 sup
Nj≤N<Nj+1, N∈Iρ

|f ∗ (LN −KN )|

:= M̃j + 2 sup
Nj≤N<Nj+1, N∈Iρ

|f ∗ (LN −KN )| .

Hence, ∑
1≤j≤J

‖Mjf‖2`2 ≤ 4(
∑

1≤j≤J

‖M̃jf‖2`2 +
∑
N∈Iρ

|f ∗ (LN −KN )|2) .

Using (7.12), we see that ‖L̂[ρn] − K̂[ρn]‖∞ ≤ C
nγ̃ log ρ , with γ̃ = min(γ, S) > 1/2. Hence∑

N∈Iρ

‖f ∗ (LN −KN )‖2`2(Z) ≤ ‖f‖
2
`2(Z)

∑
N∈Iρ

‖L̂N − K̂N‖2∞ <∞ ;

Hence, it is enough to prove the theorem with (M̃j) in place of (Mj). Let t = t(J) be an integer
to be chosen later. Define RN through its Fourier transform, i.e.

R̂N (x) := ŵn,0(x)η0(x) +
∑

1≤s≤t

∑
2s−1≤q<2s

∑
1≤a≤q,a∧q=1

ŵn,q(x− a/q)ηs(x− a/q) .

It follows from (7.11) that for every 1/2 < δ < τ ,

‖ sup
N∈Iρ

|f ∗ (LN −RN )|‖`2(Z) ≤ C2(δ−τ)t .

In particular,

(7.16)
∑

1≤j≤J

‖M̃jf‖2`2 ≤
∑

1≤j≤J

‖ sup
Nj≤N<Nj+1, N∈Iρ

|f ∗RN − f ∗RNj |‖2`2 + CJ22(δ−τ)t

Define gs, aq by ĝs, aq (x) = ηs(x)f(x+ a
q ) and g0(x) = η0(x)f(x). Then, using the change of variable

x→ x+ a
q , for every k ∈ Z, we have

f ∗RN (k) =

∫ 1/2

−1/2

f̂(x)R̂N (x)e−2iπkx dx =

∫ 1/2

−1/2

ĝ0(x)ŵN,0(x)e−2iπkx dx
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+
∑

1≤s≤t

∑
2s−1≤q<2s

1

q

∑
1≤a≤q,a∧q=1

e−2ikπ aq

∫ 1/2

−1/2

ĝs, aq (x)ŵN,q(x)e−2iπkx dx .(7.17)

Hence,

|f ∗RN − f ∗RNj | ≤ 2t max
1≤s≤t

max
2s−1≤q<2s

1≤a≤q
a∧q=1

|gs, aq ∗ (wN − wNj )|(k) .(7.18)

Combining (7.16), (7.17), (7.18) and (7.14), we infer that∑
1≤j≤J

‖M̃jf‖2`2 ≤ C2t‖f‖`2(Z) + CJ22(δ−τ)t ,

which is o(J) if we chose for instance t(J) = [log log J ], and the theorem is proved. �

8. Proof of Theorem 1.4

Firstly, we prove the dominated ergodic theorem for the weights (dn)n≥1. In this case, since Dn

does not grow too fast, it suffices to deal with positive functions and to prove a maximal inequality
along the dyadic integers.

For every n ≥ 2 and every q ≥ 1, define

wn,q :=
1

qn log n

∑
1≤k≤n

log k δk +
2(γ − 1− log q)

n log n

∑
1≤k≤n

δk ,

and

(8.1) ψn,q(x) := ŵn,q(x) =
1

qn

∑
1≤k≤n

log k eikx +
2(γ − 1− log q)

n log n

∑
1≤k≤n

eikx .

Using the well-known estimate 1
n |
∑

1≤k≤n eikx| ≤ min(1, 1
|nx| ) and Abel summation to deal

with the first term in (8.1), we see that (7.1) holds for any τ ∈ [0, 1).

Recall that (see Remark 4.1) if κn := 1
n

∑
1≤k≤n δk, then for every p > 1, there exists Cp > 0

such that

‖ sup
n≥1
|κn ∗ g‖`p ≤ Cp‖g‖`p ∀g ∈ `p .

Since 1
n logn

∑
1≤k≤n log k δk ≤ κn, we infer that (7.9) holds far any τ ∈ [0, 1).

Let S > 1. For every n ≥ 2 define

Pn := [(log n)3S [, Qn = [n/(log n)2S ] .

Then, by (5.4) of Lemma 5.2 and by Lemma 5.4, we see that (7.5) and (7.6) holds for Tn(x) :=
Dn(x)/Dn, with γ = S.

Hence, by Proposition 7.2 and Calderon’s transference principle, we see that (dn)n≥1 is a good

weight for the dominated ergodic theorem in Lp for every p ∈ [1/τ + 2−1/τ
2S , 2]. Since we may take

τ arbitrary close to 1 and S arbitrary large, the dominated ergodic theorem holds for every p > 1
as well.

Secondly, we shall prove an oscillation inequality in L2. The proof is exactly as above except
that we take wn,q := 1

qn

∑
1≤k≤n δk, that we make use (5.5) of Lemma 5.2 and that we apply

Theorem 7.5 (instead of Proposition 7.2). �
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9. Open Problems.

We conclude by listing some natural problems arising from this work.

Problem 9.1 (Extension to L1,∞). Does our main Theorem 1.4 remain true in L1? Same question
with Theorem 1.2 with the θ function in place of the divisor function.

Problem 9.2 (Square function). Let N = {nj , j ≥ 1} be an increasing sequence of positive
integers, and define for any f ∈ L2,

SN(f) =
( ∞∑
p=1

‖Aτnj+1
(f)−Aτnj (f)‖22

)1/2

,

recalling that Anf := 1
Wn

∑n
k=1 wkf ◦ τk. When wk = d(k), is it true that

‖SN(f)‖2 ≤ C(N) ‖f‖2
for any f ∈ L2? Is this further true for any increasing sequence of positive integers N?

Problem 9.3 (Spectral Regularization). Can one associate to Vn(θ) = 1
Dn

∑n
k=1 d(k)e2iπnθ, a

regularizing kernel Q(θ, y) on [0, 1)2 so that for any f ∈ L2, with spectral measure µf (relatively
to the operator Tf = f ◦ τ), the new measure defined by

µ̂f (dy) =

(∫ 1

0

Q(θ, y)µf (dθ)

)
dy

verifies

‖ATnf −ATmf‖2 ≤ µ̂f
{] 1

m
,

1

n

]}
,

for any integers m ≥ n ≥ 1? Such an inequality immediately provides a control on the square
function associated to these averages. So is the case for usual ergodic averages where the corre-
sponding oscillations functions can be controlled similarly. We refer to [25] Part I, Section 1.4
concerning this notion and the related results.

Problem 9.4 (Extensions to other arithmetical functions). Can one establish the validity of
Theorem 1.4 for other arithmetical functions? Examples can be function r(n) counting the number
of ways to write n as a sum of two squares, the Piltz divisor function dk(n) counting the number
of ways to write n as a product of k factors (in the latter case we do not believe that it is
an easy task). In each of these cases, the validity (in L1) of the strong law of large numbers was
recently established in [2]. One may also consider the same question for the multiplicative function
R(u) = #{(δ, d) ∈ N2 : [d, δ] = u}.

Acknowlegments: We thank an anonymous referee for the relevant reference indicated in Re-
mark 3.9, concerning the weighted ergodic theorem with weights |µ(n)|, and for several valuable
suggestions.

References

[1] P. T. Bateman, S. Chowla, Some special trigonometrical series related to the distribution of primes, J. London
Math. Soc., 38, 372–374, (1963).

[2] I. Berkes, W. Müller, M. Weber, On the strong law of large numbers and arithmetic functions, Indagationes
Math. 23, 547-555, (2012).

[3] I. Berkes, W. Müller, M. Weber, On the strong law of large numbers and additive functions, Period. Math.

Hungar. 62 (2011), no. 1, 1-12.

[4] J. Bourgain, On the maximal ergodic theorem for certain subsets of the integers, Israel J. Math. 61, 39-72,
(1988).

[5] J. Bourgain, Pointwise ergodic theorems for arithmetic sets, with an appendix on return time sequences, jointly

with H. Furstenberg, Y. Katznelson, D. Ornstein, Inst. Hautes Études Sci. Publ. Math. 69, 5-45, (1988).

[6] J. Bourgain, An approach to pointwise ergodic theorems, Geometric aspects of functional analysis (1986/87),
204-223, Lecture Notes in Math., 1317, Springer, Berlin, (1988).

[7] H. Davenport, On some infnite series involving arithmetical functions, Quart. J. Math., Oxf. Ser. 8, 8-13,

(1937).



ERGODIC THEOREMS WITH ARITHMETICAL WEIGHTS 27

[8] H. Davenport, On some infnite series involving arithmetical functions II, Quart. J. Math., Oxf. Ser. 8, 313-320,
(1937).

[9] H. Delange, Sur des formules de Atle Selberg, Acta Arith. 19, 105-146, (1971).

[10] C. Demeter and A. Quas, Weak-L1-estimates and ergodic theorems, New York J. Math., 10, 169-174, (2004).
[11] E. H. El Abdalaoui, J. Kulaga-Przymus, M. Lemanczyk and T. De La Rue, The Chowla and the Sarnak

conjectures from ergodic theory point of view, arXiv:1410.1673, (2014).

[12] G. H. Hardy, J. E. Littlewood, A maximal theorem with functions-theoretic applications, Acta Math. 54,
81–116, (1930).

[13] G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, fifth edition, Oxford at the Clarendon

Press, Oxford, (1979).
[14] G. H. Hardy, J. E. Littlewood, G. Plya Inequalities, 2d ed. Cambridge, at the University Press, (1952).

[15] B. Jamison, S. Orey and W. Pruitt, Convergence of weighted averages of independent random variables, Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete 4, 40–44, (1965).

[16] R. Jones, R. Kaufman, J. Rosenblatt and M. Wierdl, Oscillation in ergodic theory, Ergodic Theory Dynam.

Systems 18 no. 4, 889-935, (1998).
[17] M. Jutila, On exponential sums involving the divisor function., J. Reine Angew. Math. 355, 173-190, (1985).

[18] P. LaVictoire, Universally L1-bad arithmetic sequences, J. Anal. Math. 113, 241-263, (2011).

[19] McCarthy P. J., Introduction to Arithmetical Functions, (Universitext), Springer-Verlag New-York Inc., (1986).
[20] M. Mirek and B. Trojan, Cotlar’s ergodic theorem along the prime numbers, arXiv:1311.7572, (2013).

[21] J. M. Rosenblatt and M. Wierdl, Pointwise Ergodic Theorems via Harmonic Analysis, Proceedings of the

Conference on Ergodic Theory and its Connections with Harmonic Analysis, Alexandria, Egypt, Cambridge
University Press, 3–151, (1994).
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E-mail address: christophe.cuny@ecp.fr
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