A deviation bound for α-dependent sequences with applications to intermittent maps - Archive ouverte HAL
Article Dans Une Revue Stochastics and Dynamics Année : 2017

A deviation bound for α-dependent sequences with applications to intermittent maps

Résumé

We prove a deviation bound for the maximum of partial sums of functions of α-dependent sequences as defined in Dedecker, Gouëzel and Merlevède (2010). As a consequence, we extend the Rosenthal inequality of Rio (2000) for α-mixing sequences in the sense of Rosenblatt (1956) to the larger class of α-dependent sequences. Starting from the deviation inequality, we obtain upper bounds for large deviations and an Hölderian invariance principle for the Donsker line. We illustrate our results through the example of intermittent maps of the interval, which are not α-mixing in the sense of Rosenblatt.
Fichier principal
Vignette du fichier
Rosenthal-alpha-final.pdf (252.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01259827 , version 1 (21-01-2016)

Identifiants

Citer

J Dedecker, Florence Merlevède. A deviation bound for α-dependent sequences with applications to intermittent maps. Stochastics and Dynamics, 2017, 17 (1), 27pp. ⟨hal-01259827⟩
169 Consultations
180 Téléchargements

Altmetric

Partager

More