The Euclidean algorithm in quintic and septic cyclic fields - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

The Euclidean algorithm in quintic and septic cyclic fields

Résumé

Conditionally on the Generalized Riemann Hypothesis (GRH), we prove the following results: (1) a cyclic number field of degree $5$ is norm-Euclidean if and only if $\Delta=11^4,31^4,41^4$; (2) a cyclic number field of degree $7$ is norm-Euclidean if and only if $\Delta=29^6,43^6$; (3) there are no norm-Euclidean cyclic number fields of degrees $19$, $31$, $37$, $43$, $47$, $59$, $67$, $71$, $73$, $79$, $97$. Our proofs contain a large computational component, including the calculation of the Euclidean minimum in some cases; the correctness of these calculations does not depend upon the GRH. Finally, we improve on what is known unconditionally in the cubic case by showing that any norm-Euclidean cyclic cubic field must have conductor $f\leq 157$ except possibly when $f\in(2\cdot 10^{14}, 10^{50})$.
Fichier principal
Vignette du fichier
quintic_septic.pdf (306.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01258906 , version 1 (19-01-2016)
hal-01258906 , version 2 (28-04-2016)

Identifiants

Citer

Pierre Lezowski, Kevin J. Mcgown. The Euclidean algorithm in quintic and septic cyclic fields. 2015. ⟨hal-01258906v1⟩
276 Consultations
181 Téléchargements

Altmetric

Partager

More