Separation Logic with One Quantified Variable - Archive ouverte HAL
Article Dans Une Revue Theory of Computing Systems Année : 2017

Separation Logic with One Quantified Variable

Didier Galmiche
Daniel Mery

Résumé

We investigate first-order separation logic with one record field restricted to a unique quantified variable (1SL1). Undecidability is known when the number of quantified variables is unbounded and the satisfiability problem is PSPACE-complete for the propositional fragment. We show that the satisfiability problem for 1SL1 is PSPACE-complete and we characterize its expressive power by showing that every formula is equivalent to a Boolean combination of atomic properties. This contributes to our understanding of fragments of first-order separation logic that can specify properties about the memory heap of programs with singly-linked lists. All the fragments we consider contain the magic wand operator and first-order quantification over a single variable.
Fichier principal
Vignette du fichier
ToCS_SI_CSR14_demri_galmiche_larchey_mery.pdf (708.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01258821 , version 1 (19-01-2016)

Licence

Identifiants

Citer

Stephane Demri, Didier Galmiche, Dominique Larchey-Wendling, Daniel Mery. Separation Logic with One Quantified Variable. Theory of Computing Systems, 2017, 61 (2), pp.371-461. ⟨10.1007/s00224-016-9713-1⟩. ⟨hal-01258821⟩
1452 Consultations
199 Téléchargements

Altmetric

Partager

More