Separation Logic with One Quantified Variable - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Separation Logic with One Quantified Variable

Résumé

We investigate first-order separation logic with one record field restricted to a unique quantified variable (1SL1). Undecidability is known when the number of quantified variables is unbounded and the satisfiability problem is PSPACE-complete for the propositional fragment. We show that the satisfiability problem for 1SL1 is PSPACE-complete and we characterize its expressive power by showing that every formula is equivalent to a Boolean combination of atomic properties. This contributes to our understanding of fragments of first-order separation logic that can specify properties about the memory heap of programs with singly-linked lists. When the number of program variables is fixed, the complexity drops to polynomial time. All the fragments we consider contain the magic wand operator and first-order quantification over a single variable.
Fichier principal
Vignette du fichier
final-csr14.pdf (287.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-01258802 , version 1 (02-10-2023)

Licence

Identifiants

Citer

Stephane Demri, Didier Galmiche, Dominique Larchey-Wendling, Daniel Mery. Separation Logic with One Quantified Variable. 9th International Computer Science Symposium (CSR 2014), Jun 2014, Moscou, Russia. ⟨10.1007/978-3-319-06686-8_10⟩. ⟨hal-01258802⟩
223 Consultations
30 Téléchargements

Altmetric

Partager

More