FlierMeet: a mobile crowdsensing system for cross-space public information reposting, tagging, and sharing
Résumé
Community bulletin boards serve an important function for public information sharing in modern society. Posted fliers advertise services, events, and other announcements. However, fliers posted offline suffer from problems such as limited spatial-temporal coverage and inefficient search support. In recent years, with the development of sensor-enhanced mobile devices, mobile crowd sensing (MCS) has been used in a variety of application areas. This paper presents FlierMeet, a crowd-powered sensing system for cross-space public information reposting, tagging, and sharing. The tags learned are useful for flier sharing and preferred information retrieval and suggestion. Specifically, we utilize various contexts (e.g., spatio-temporal info, flier publishing/reposting behaviors, etc.) and textual features to group similar reposts and classify them into categories. We further identify a novel set of crowd-object interaction hints to predict the semantic tags of reposts. To evaluate our system, 38 participants were recruited and 2,035 reposts were captured during an eight-week period. Experiments on this dataset showed that our approach to flier grouping is effective and the proposed features are useful for flier category/semantic tagging