Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group - Archive ouverte HAL
Article Dans Une Revue Sbornik: Mathematics Année : 2014

Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group

Résumé

The aim of this paper is to prove ergodic decomposition theo- rems for probability measures which are quasi-invariant under Borel actions of inductively compact groups as well as for σ-finite invariant measures. For infinite measures the ergodic decomposition is not unique, but the measure class of the decomposing measure on the space of projective measures is uniquely defined by the initial invariant measure.
Fichier principal
Vignette du fichier
Inductively compact group.pdf (234.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01256098 , version 1 (14-01-2016)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Alexander I. Bufetov. Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group. Sbornik: Mathematics, 2014. ⟨hal-01256098⟩
89 Consultations
432 Téléchargements

Altmetric

Partager

More