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ERGODIC DECOMPOSITION FOR MEASURES
QUASI-INVARIANT UNDER BOREL ACTIONS OF
INDUCTIVELY COMPACT GROUPS

ALEXANDER I. BUFETOV

ABSTRACT. The aim of this paper is to prove ergodic decomposition
theorems for probability measures quasi-invariant unaeeBactions of
inductively compact groups (Theoréin 1) as well asofdinite invariant
measures (Corollafy 1). For infinite measures the ergodiom@osition

is not unique, but the measure class of the decomposing meeashe
space of projective measures is uniquely defined by thalinitvariant
measure (Theorem 2).

1. INTRODUCTION.

1.1. Outline of the main results. The first result of this paper establishes
existence and unigueness of ergodic decomposition forgtibty mea-
sures quasi-invariant under Borel actions of inductivadynpact groups
(Theoreni_l). First we show in Propositiioh 2 that for actiohmductively
compact group ergodicity of a quasi-invariant measure isvatent to its
indecomposability (as Kolmogorov’s example [5] showss thquivalence
does not hold for measure-preserving actions of generalpgjo The er-
godic decomposition is then constructed under the additiaasumption
that the Radon-Nikodym cocycle of the measure is continuotestriction
to each orbit of the group (thigbrewise continuitycondition). This con-
dition is only restrictive for actions of uncountable grsuprhe proof of
Theorent 1 relies on Rohlin’s method of constructing ergatdicomposi-
tions.

Theoreni 1 is then applied tofinite invariant measures. In this case the
ergodic decomposition is not unique. The measure classealécompos-
ing measure on the space of projective measures is howeigraiy de-
fined by the initial invariant measure (Theorem 2). In theust{3] to this
paper, its results are applied to the ergodic decompositianfinite Hua-
Pickrell measures, introduced by Borodin and Olshanskid@]spaces of
infinite Hermitian matrices.

For completeness of the exposition, Kolmogorov’s examjpla group

action admitting decomposable ergodic measures is altudied.
1
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For actions of the grouf with a quasi-invariant measure, the ergodic
decomposition theorem was obtained by Kifer and Pirogowjiip used
the method of Rohlin [11].

For actions of locally compact groups, a general ergodioagosition
theorem is due to Greschonig and Schmidt [6] whose appradeased on
Choquet’s theorem (see, e.d., [9]). In order to be able tdyappoquet’s
theorem, Greschonig and Schmidt use Varadarajan’s thefd#jmlaiming
that every Borel action of a locally compact group admitsiaticaous real-
ization (see Theorefd 3 below). It is not clear whether a simmésult holds
for inductively compact groups (see the question followitgoren_B).

For the natural action of the infinite unitary group on thecgpaf infinite
Hermitian matrices, ergodic decomposition of invarianthability mea-
sures was constructed by Borodin and Olshanski [2]. BoradohOlshan-
ski [2] rely on Choquet’s Theorem, which, however, cannatged directly
since the space of infinite Hermitian matrices is not comp@aotodin and
Olshanski embed the space of probability measures on tloe gihanfinite
Hermitian matrices into a larger convex compact metrizaeteto which
Choquet’'s Theorem can be applied.

Rohlin’s approach to the problem of ergodic decompositexuires nei-
ther continuity nor compactness, and the results of thigpapply to all
Borel actions of inductively compact groups. The martieganvergence
theorem is used instead of the ergodic theorem on which Relaligument
relies; the idea of using martingale convergence for sglirivariant mea-
sures for actions of inductively compact groups goes batletshik’s note
[15].

1.2. Measurable actions of topological groups on Borel spaces.

1.2.1. Standard Borel spaced.et X be a set, and Ik be a sigma-algebra
on X. The pair(X, B) will be calleda standard Borel spacé there exists
a bijection betweenX and the unit interval which sends to the sigma-
algebra of Borel sets. We will continue to cdllthe Borel sigma-algebra,
and measures defined @nwill be called Borel measures.

Let 91(X) be the space of Borel probability measures)dnA natural
o-algebraB (M (X)) on the spac@t(X) is defined as follows. Letl € X
be a Borel subset, let € R, and let

Myo ={veMX): v(A) > a}.

Thes-algebraB (Mt(X)) is then the smallest-algebra containing all sets
Myo A€ B(X),aeR. Clearly, if (X, B) is a standard Borel space, then
(M(X), B(M(X)) is also a standard Borel space.
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A Borel measure on a standard Borel spa¢&’, B) is calledo-finite if
there exists a countable family of disjoint Borel subsets

X1, Xoy oo, Xy oo
of X such that
X =[x,
n=1

and such that(X,) < +oco for anyn € N. We denote byt (X) the
space of allo-finite Borel measures oX (note that, in our terminology,

finite measures are alsofinite). The spac&i> (X)) admits a natural Borel
structure: the Borer-algebra is generated by sets of the form

{fveMm>(X): a<v(A) <8},

whereq, 5 are real and! is a Borel subset ok'.
If v is a Borel measure oX and f € L,(X,v), then for brevity we

denote
v(f) = [ fdv.
/

As usual, bya measure classe mean the family of all sigma-finite Borel
measures with the same sigma-algebra of sets of measureTAezanea-
sure class of a measurewill be denotedv|. We writer;, < 1y if vy is
absolutely continuous with respectitg while the notation;, L v, means,
as usual, that the measurgsy, are mutually singular.

1.2.2. Measurable actions of topological groupblow let G be a topolog-
ical group endowed with the Borel sigma-algebra. Assumettieagroup

G acts onX and forg € G let T, be the corresponding transformation. The
action will be calledneasurablgor Borel) if the map

T:EGx X=X, %(g,2)=T,

is Borel-measurable. The grodpacts ordt(X). It will be convenient for
us to consider the right action and foe G to introduce the measure

voT,(A)=v(T,A).
The resulting right action is, of course, Borel.
1.2.3. Inductively compact groupd.et
K(l)cK((2)c ... CK(n)C ...
be an ascending chain of metrizable compact groups and set

G=|]JKMn).
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The groupG will then be callednductively compactNatural examples are
the infinite symmetric group

S(o0) = | S(n)

or the infinite unitary group

U(oo) = [ JU(n)

(in both examples, the inductive limit is taken with respecthe natural
inclusions).

An inductively compact grougr is endowed with the natural topology of
the inductive limit, under which a function a# is continuous if and only
if it is continuous in restriction to eacR (n). The Borelo-algebra orG is
the span of the Boret-algebras ori<'(n), n € N.

1.3. Cocycles and measures.

1.3.1. Measurable cocyclesn this paper, a measurable cocycle over a
measurable actio® of a topological groug- will always mean a positive
real-valued multiplicative cocycle, that is, a measuralép

p . G X X — R>0
satisfying the cocycle identity

p(gh, x) = p(g, Trz) - p(h, ).
Given a positive real-valued multiplicative cocygl@ver a measurable ac-
tion ¥ of a topological groug>, introduce the spac®i(¥, p) C 9(X) of
Borel probability measures with Radon-Nikodym cocygehith respect to
the actionz:

M(T, p) = {u e MX): dydo 1y (x) = p(g,z) forall g € G andv-almost allz € X} .
1%

Note that for a given probability measurgquasi-invariant under the action
¥, its Radon-Nikodym cocycle is not uniquely, but only almasiquely
defined: if two Radon-Nikodym cocycles, p, corresponding to the same
measure- are given, then for any € G the equality

p1(g, ) = pa(g, z)

holds forv-almost allz € X.
Nonetheless, the spafi®(<, p) is a convex cone. Indeed, if

vioT,(A) = /p(g,x) dv;, i=1,2
A
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then also

(1 + 1) 0 Ty (A) = / p(g,2) d(v, + ).

1.3.2. Indecomposability and ergodicityAs before, lep be a positive real-
valued multiplicative measurable cocycle over a measarablion® of a
topological groug~ on a standard Borel spa¢#’, B).

A measurer € M(T,p) is calledindecomposablén 91 (¥, p) if the
equalityr = avy + (1 — a)wy, With o € (0,1), vy, 15 € M(T, p) implies
V =1 = .

Recall that a Borel set is calledalmost invarianwith respect to a Borel
measure if for every g € G we havev(AAT,A) = 0. Indecomposability
can be equivalently reformulated as follows.

Proposition 1. A Borel probability measure € 9(¥, p) is indecompos-
able in 9(%, p) if and only if any Borel setd, almost-invariant under
the actionT with respect to the measure satisfies either(A) = 0 or
v(X\A)=0.

A measurer € M(T, p) is calledergodicif for every G-invariant Borel
set A we have either(A) = 0 or v(X \ A) = 0. The set of all ergodic
measures with Radon-Nikodym cocyglés denotedi.,. (T, p).

Indecomposable measures are a fortiori ergodic. For actbigeneral
groups, ergodic probability measures may fail to be indguusable: as
Kolmogorov showed, the two notions are different for theunataction of
the group of all bijections of. on the space of bi-infinite binary sequences
(for completeness, we recall Kolmogorov’'s example in tret Bection).
An informal reason is that actions of “large” groups may hdawe few” or-
bits (a countable set in Kolmogorov’s example), and consetiyia convex
combination of distinct ergodic measures may also be ecgodi

Nevertheless, for actions of inductively compact groups,ttvo notions
coincide:

Proposition 2. Let T be a measurable action of an inductively compact
group on a standard Borel spadeX, B), and letp be a positive measur-
able multiplicative cocycle ovetf. If a measurer € (T, p) is ergodic,
thenv is indecomposable iM(T, p).

1.4. Ergodic decomposition of quasi-invariant probability measures.

1.4.1. Fibrewise continuous cocycle3o formulate the ergodic decompo-
sition theorem for quasi-invariant measures, we need iaddit assump-
tions on the Radon-Nikodym cocycte

Let T be a measurable action of a topological gra@sipn a standard
Borel spaceé X, B).
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Definition. A positive real-valued measurable cocygleG x X — R+
over the actiont will be calledfibrewise continuous for any = € X the
functionp, : G — R. given by the formula,.(¢) = p(g, =) is continuous.

Remark. If G is inductively compact,

G = D K(n), Kn)c Kn+1)

then, by definition of the inductive limit topology, the remgment of fibre-
wise continuity precisely means that for amye N the functionp, defined
above is continuous in restriction f6(n).

For general actions of topological groups, it is not cleaethier the set of
measures with a given Radon-Nikodym cocycle is Borel. Thaéhe case,
however, for actions of inductively compact groups and filise continu-
ous cocycles:

Proposition 3. Let p be a fibrewise continuous cocycle over a measurable
action ¥ of a separable metrizable grou@ on a standard Borel space
(X, B). Then the sedi(T, p) is a Borel subset dbt(.X).

Indeed, for fixedy € G the set

{vemen: 28— g}

is clearly Borel. Choosing a countable dense subgroup, we obtain the
result.

In Proposition_1D below, we shall see that for a measurakiieraof
an inductively compact group, the set of ergodic measurés avigiven
fibrewise continuous Radon-Nikodym cocycle is Borel as well

1.4.2. Integrals over the space of measuréet 7 € M(M(X)), in other
words, letr be a Borel probability measure on the space of Borel proityabil
measures otX . Introduce a measutec Mt(.X) by the formula

® v= [ warto)
M(X)
The integral in the right-hand side &fl (1) is understood i filllowing
weak sense. For any Borel sétC X, the functionint, : 91(X) — R

given by the formulant4(n) = n(A) is clearly Borel measurable. The
equality [1) means that for any Borel sétc X we have

@ v4) = [ wayasta).

M(X)
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1.4.3. The ergodic decomposition theorem.

Theorem 1. Let¥ be a measurable action of an inductively compact group
G on a standard Borel spadeX, B). Letp be a fibrewise continuous pos-
itive real-valued multiplicative cocycle ovar. There exists a Borel subset

XcCcXanda surjective Borel map
7 X = My (0, )

such that

(1) Foranyn € M..,(p, T) we havey (7~ (n)) = 1,
(2) Foranyv € 9t (p, ¥) we have

V= / ndv(n),

Merg(p,T)

wherev = m,v. In particular, for anyr € 9 (p,T) we have
v(X) = 1.

(3) The correspondence — 7 is a Borel isomorphism between Borel
spacedN (T, p) and M(M.,(T, p)), and ifv € M(T, p) and v €
M(M..x(T, p)) are such that we have

v= [ nasta)

mef% (‘va)

theny = 7.
(4) Foranyvy, v, € M, (T, p), We have, < 1y if and only if7; <
7y, anduyy, L vy ifand only ifv, L ms.

1.5. Ergodic Decomposition of Infinite Invariant Measures.

1.5.1. Reduction to an equivalent finite measuwe now apply the above
results to Borel actions preserving an infinite measureeGa& measurable
action¥ of the groupG, we denote byiie (¥) the subset of7-invariant
measures iM>, by M, (T) the subset of--invariant ergodic measures
in M. Itis not clear whether the sef&i7, (T) andMgy, (T) are Borel. It
will be therefore convenient to consider smaller subsefBiesf, namely, of
measures that assign finite integral to a given positive araage function.

To simplify notation, consider the spacé fixed and omit it from no-
tation, writing, for instancet instead ofMi(X). Also, for a measure
veM>andf € Li(X,v) write

of) = [ fav
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Given a positive measurable functigron X, we set
ME = {veM>: feli(Xv)}.

Introduce a map

Pf Sﬁm — M
by the formula
fv
3 P:(v) = ——.
3) (V) (7
Introduce a cocycle; over the actior by the formula
f(Tyz)

ps(g,x) = o)
A measurey € IMF is T-invariant if and only if
Py(v) € M(T, py).
Denote
= {V €My : = 1} ;
fl,inv(‘z) i)ﬁ A moo (T);

mv

;01 crg(g) moo N 9:)’(00 (‘Z)

erg

The setn?’, is Borel by definition. The maﬁ’f yields a Borel isomorphism
of Borel space@ﬁOO and9; the former is consequently a standard Borel
space. Furthermore we clearly have

Pf( flan) = i)ﬁ(f,pr
Pf( flerg) = merg(‘Lpf)-

In order to be able to apply Theordm 196(%, ps), we need an addi-
tional assumption on the functigh

Definition. A Borel measurable functioi : X — R is said to befi-
brewise continuous for any z € X the functionf(7,x) is continuous in
g €aq.

In particular, if X is a metric space, and the acti@nis itself contin-
uous, then any continuous function is a fortiori fibrewisatawuous. To
produce continuous integrable functions, one can use tlesviag simple
proposition.

Proposition 4. Let X be a metric space, and letbe a sigma-finite Borel
measure orX assigning finite weight to every ball. Then the spageX, v)
contains a positive continuous function.
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Proof. Let d be the metric onX, takez, € X, lety : R, — R., be
positive, bounded and continuous, and get) = ¥ (d(z, xy)). The mass
of every ball is finite, so, if the functiogy decays fast enough at infinity,
thenf € L,(X,v). O

If the functionf is fibrewise continuous then the cocyglegiven by the
formula

o f(Tgx)
pf(.gvx) - f(l')

is fibrewise continuous as well. Consequently, the 8&t$,  andMg .,
are Borel subsets 01>, and so are the sel 7, andMy,,.

Without losing generality assumg f) = 1 and consider the ergodic
decomposition

) fv= / ndir(n)

Merg (T.05)

of the measurgv in M(T, ps). Dividing by f, we now obtain an ergodic
decomposition

(5) v=[ ndstu)

oo
mfyl,erg

of the initial measure; note that, by construction, the correspondence
v is bijective.
Theorent Il now implies the following
Corollary 1. Let¥ be a measurable action of an inductively compact group

G on a standard Borel spaceX, B). Letf : X — R., be measurable,
positive and fibrewise continuous. Then:

(1) The setn¥, ;,, (T) andINF, . (T) are Borel subsets @bt (X).

f,lerg
(2) Every measurg € M7, . (T) is indecomposable im$ ;  (T).
(3) For anyv € M3 ;. (T) there exists a unique Borel probability

measurer onM$, .. (T) such that

(6) V= / ndv(n).

m?,ol,erg (‘I)

The bijective correspondence — 7 is a Borel isomorphism of
Borel spaceNy, ;. (T) and 9 (MP, ., (T)).

Corollary[d immediately implies



10 ALEXANDER I. BUFETOV

Corollary 2. LetT be a measurable action of an inductively compact group
G on a standard Borel spaceX, B), and letv be ao-finite T-invariant
Borel measure oX such that the spack, (X, v) contains a positive Borel
measurable fibrewise continuous function. Then the measadmits an
ergodic decomposition.

Indeed, an ergodic decomposition is obtained by taking tiséipe Borel
measurable fibrewise continuous functipr L,(X, v), and dividing byf
the decompositiori {6) of the measuyfe. Such an ergodic decomposition
is of course not unique and depends on the choice of the yo®8orel
measurable fibrewise continuous integrable function.

It is convenient to allow more general ergodic decompasgtiof infinite
measures. Given a measwe 2> (X) and as-finite Borel measur@ on
M>(X), the equality

(7) V= / ndv(n)

M= (X)

will always be understood in a similar way as above, in thiofahg weak
sense. Given a Borel sdt as above we consider the function

inty : M — RZO U {OO}
defined by

inta(n) = n(A).

The equality[(¥) means that for any Borel sesatisfyingv(A) < +oo
we haveint, € L (9> (X),7v) and

va) = [ aayanty).

M= (X)

For a measure invariant under the actio, a decomposition

(8) v = / ndv(n)

Mo (X)
will be called an ergodic decomposition ofif 7 is a o-finite measure on
M>(X) andr-almost all measuresg € Mt>°(X) are invariant and ergodic

with respect to the actio. Such decomposition is, of course, far from
unique: indeed, if

e M2(X) >R
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is a Borel measurable function such thdt)) > 0 for 7-almost all, then a
new decomposition is obtained by writing

n _

= [ s,
M (X)

1.5.2. Projective measures and admissibilitks before, we consider the

spaceX fixed and omit it from notation. Introduce the projective spa

P91, the quotient of)t> by the projective equivalence relatiendefined

in the usual way:

vy ~vy If vy =X forsomel > 0.

Let

p M — PO
be the natural projection map. ElementsPofit> will be called projective
measures; finiteness, invariance, quasi-invariance ayutligity of projec-
tive measures are defined in the obvious way, and we denote

PO (F) = p(M,(T)); PMEL(T) = p(ME,(T)).

inv erg

The Borel structure in the spa@8i* is defined in the usual way: a set
A C PO is Borel if its preimagep ' (A) is Borel.

Definition. A measurer € 91> (91*°) is calledadmissibléf the projec-
tion mapp is 7-almost surely a bijection.

For example, any measure supported on th&&&t9t) or, for a positive
measurablg, on the seft> (M%), is automatically admissible.

If the measure in an ergodic decompositiohl(8) is admissible, then the
ergodic decomposition is called admissible as well.

The following theorem shows that for a given invariant sigiinge mea-
surev, the measure class of the measpte is the same for all admissible
ergodic decompositionkl(8).

Theorem 2. Let¥ be a measurable action of an inductively compact group
G on a standard Borel spaceX, B), and letr be ac-finite T-invariant
Borel measure oX such that the spack, (X, v) contains a positive Borel
measurable fibrewise continuous function. Then there £xistneasure

classPCL(v) on P9 with the following properties.
(1) Foranyv € PCL(v) we havey (POn> \ PO, (T)) = 0.

(2) For any admissible ergodic decomposition

v= /ndﬁ(n)

o
of the measure we havep,.v € PCL(v).
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(3) Conversely, for any-finite Borel measure € PC'L(v) there exists
a unique admissible-finite Borel measure on Mt>°(.X') such that

p.7 = v and
v = [ navty).

M (X)
(4) Letr; and, be twoT-invariant o-finite Borel measures, each ad-
mitting a positive fibrewise continuous integrable funetioThen
v < 1y ifandonly if PCL(1,) < PCL(v,) andv;, L vy if and
only if PCL(v,) L PCL(vs). In particular, PCL(v,) = PCL(1,)
if and only if 1] = [15].

1.5.3. Infinite measures all whose ergodic components are filG@nsider
the setPt of finite projective measures and letbe a sigma-finite invari-
ant measure such th&C'L(v) is supported oP0t. In this case take an
arbitrary ergodic decomposition

v= / ndw(n)

moo
and deform it by writing

y= / s n(1)dn()

moo
In this way we obtain an ergodic decomposition

V= / ndv(n),

Merg(T)

where the measufg supported oM., (), is uniquely defined by.
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2. AVERAGING OPERATORS

2.1. Averaging over orbits of compact groups. Let K be a compact group

endowed with the Haar measuyig and let¥x be a measurable action of
K on a standard Borel spa¢&, B). Letp be a positive multiplicative real-

valued measurable cocycle over the action. Let B(X) be the space of

bounded measurable functions &nendowed with the Tchebychev metric.
Introduce an operatof’, : B(X) — B(X) by the formula

©) ,
/ F(Tx) plk, =) e (k)

K if [ p(k,z)dug(k) < +oo
(Afef) () = / p(k, ) dpuc (k) Z

0, if /p(k,x) du (k) = +oo.

\

It is clear thatA’. is a positive contraction on the spaBex).

Let Jx be theo-algebra of K-invariant subsets ok, and, for a given
measure, letJ}. be the completion df with respect to .

As before (T, p) stands for the space of Borel probability measures
on X with Radon-Nikodym cocycle with respect to the actioR .

Lemma 1. For anyv € 9(%k, p) and anyf € L,(X, v) both integrals on
the right-hand side of9) are v-almost surely finite. The extended operator
A% is a positive contraction of, (X, v), and we have the-almost sure
equality

(10) Al f = E(f | T%)-

Remark. Note that the left-hand side df (10) does not depend on the
measure/, only on the cocycle. This simple observation will be important
in what follows.

Proof. Let p, : K — R be defined by the formula
pa(k) = p(k,z).

From the Fubini Theorem it immediately follows that feralmost every
x € X we havep, € L (K, ug). Now takep € Li(X, ) and set

0o (k) = o(Trx)p(k, ).
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Proposition 5. For v-almost every: € X we havep, € L, (K, k).

Consider the product spaéé x X endowed with the measuredefined
by the formula

(12) dv = p(k, z) dug dv.

For any fixedk, € K we have

/X plko, ) di(z) = 1,

whencer is a probability measure.
For anyk € K we have

/|ngk1’|pk‘xdu /|g0 )| dv(z

so the functionp(k, x) = p(Tyz) satisfiesp € L,(K x X,r). The claim
of the Proposition follows now from the Fubini Theorem.

We return to the proof of Lemnid 1. First, the cocycle propertglies
that

Al-o(x) = Al-o(Tyx)

foranyk € K. By the Fubini Theorem applied to the spd€ex X endowed
with the measure, for any Borel subsett ¢ X andanyp € L, (K x X, D)
we have:

2) [ [ Gk.x) plk, 2) duse () do(a) =
/]
/ Bk, ) plk, ) dusc (k)

:A/ K/ [ pth.) dpcr)

K

p(k, ) dpuge (k) dv ().

Now takey € L, (X, v) and apply the above formula to the function
(note here thap € L;(K x X, ) by Fubini’s theorem). We obtain

/( [ orin dyow) o /( [ o) >) o)

K A
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Now let the setd be K-invariant. Recalling that the functiod’.¢ is
K-invariant as well, we finally obtain

[ etaravie) = [ At vta),
A
and the Lemma is proved completely. O

2.2. Averaging over orbits of inductively compact groups. As above, let
+o0o
G=|JKMn), K(n)c K(n+1)
n=1

be an inductively compact group, and gty denote the Haar measure on
the groupK (n). Assume we are given a measurable acfioaf G on a
standard Borel spadeX, B). Let Ik, stand for ther-algebra ofK'(n) —
invariant measurable subsets of X, andlebe thes-algebra of7-invariant
subsets ofX. Clearly, we have

Jo =) Ixm):
n=1

Let p be a positive measurable multiplicative cocycle over th®act.

The averaging operatov%ﬁqn), n € N, are defined, for a bounded mea-
surable functionp on X, by formula [9). For brevity, we shall sometimes
write AL = Al (-

Now taker € M(T, p) and lety ), I be the completions of the sigma-
algebrad ), J¢ with respect to the measure

By the results of the previous subsection, for ang L;(X,v), we have
thev-almost sure equality

AL = B | Tiem)-
SinceJy (1) C J%(), the reverse martingale convergence theorem im-
plies the following

Proposition 6. For anyy € L, (X, v) we have
lim A7 =E(p | T)
bothv-almost surely and it (X, v).
Introduce the averaging operatéf_ by setting
Abep(z) = lim Afep(z).

If for a givenz € X the sequencd’ o(x) fails to converge, then the value
A?f_p(z) is not defined. From the definitions and the Reverse Martingal
Convergence Theorem we immediately have
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Proposition 7. A measure; € 9(¥T, p) is ergodic of and only if for any
v € L1(X,n) we have

Alop(x) = / pdn
X
almost everywhere with respect to the measure

Conversely, we have

Proposition 8. Letn € M (T, p) and assume that there exists a dense set
U C L;(X,n) such that for any) € ¥ we have

s = [
almost surely with respect tp Then the measurgis ergodic.

2.3. Equivalence of indecomposability and ergodicity: proof ofPropo-
sition 2.

Proposition 9. Let A be aG-almost-invariant Borel subset of. Then
there exists &--invariant Borel setd such that

v(AnA)=0.

Proof. Let x4 be, as usual, the indicator function af If A is G-almost-
invariant, then for almost every € A and alln € N we have

.AZXA({L') =1.

Indeed, consider the sét(n) x A endowed with the product measure

Hrm) % v. For almost all point§k,z) € K(n) x A by definition we

haveT,x € A. By Fubini's theorem, for almost every € X the set

{k € K(n) : Tyz € A} has full measure, wheno&’ x 4(x) = 1 as desired.
Now introduce the sefl as follows:

A={z e X : A%xa(z) = 1 for all sufficiently largen € N}.

By definition, A > A. On the other hand, since far ¢ A we have
AL xa(x) =1, the equality

/A Xadv =v(A)

impliesv(A) < v(A), whence/(A A A) = 0 and the proposition is proved.
U
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2.4. The set of ergodic measures is Borel.

Proposition 10. Let p be a fibrewise continuous cocycle over a measurable
action ¥ of an inductively compact grou@ on a standard Borel space
(X, B). Then the sedt...(T, p) is a Borel subset dbt(X).

Proof. We start with the following auxiliary proposition.

Proposition 11. Let (X, B) be a standard Borel space. There exists a count-
able setd of bounded measurable functions &nsuch that for any proba-
bility measurer on X and any bounded measurable functipn X — R
there exists a sequengg € ® such that
(1) sup @u(r) < +o0;
neN,xze X
(2) ¢ — p asn — oo almost surely with respect ta

Proof. On the unit interval take the family of piecewise-linear dtions
with nodes at rational points. O

We return to the proof of Propositidnl10. It is clear that foy dixed
bounded measurable functignon X the set

{v: lim Ay exists and is constantalmost surely

n—o0

is Borel. Intersecting over alp € ® and using Propositidd 8, we obtain the
claim. O

3. THE SIGMA-ALGEBRA OF GG-INVARIANT SETS.
3.1. Measurable partitions in the sense of Rohlin.

3.1.1. Lebesgue space# triple (X, B, v), whereX is a set,B a sigma-

algebra onX, andr a measure oX, defined orB and such thaB is com-

plete with respect to is called a_ebesgue spadéit is either countable or
measurably isomorphic to the unit interval endowed withdilgena-algebra
of Lebesgue measurable sets and the Lebesgue measurep§aiitia a

countable family of atoms). No Borel structure éhis assumed in this
definition.

3.1.2. Measurable partitions A partition¢ of X is simply a representation
of X as a disjoint union of measurable sets:

X:UXQ.

The setsX,, are callecelement®f the partition. For a point, the element
of the partition{ containingz will be denotedC.(x). A family of setsw
is said to bea basisfor the partition¢ if for any two elementsX;, X, of £
there exists a set; in ¥ containingA; and disjoint fromA,. A measurable
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partition £ of (X, B, v) is by definition a partition of a subsét C X of
full measure which admits a countable basis.

Following Rohlin, to a measurable partitignwe assign the quotient
spaceX (£) whose points are elements of the partitttnWe have a nat-
ural almost surely defined projection map: X — X (¢), which endows
the setX (¢) with a natural sigma-algebr&(¢), the push-forward ofB,
and the natural quotient-measurg the push-forward of the measure
Rohlin proved that the spade&X (¢), B(¢),7¢) is again a Lebesgue space.
Furthermore, Rohlin showed that the measuemits thecanonical sys-
tem of conditional measuregefined as follows. Fop.-almost every ele-
mentC of the partition{ there is a probability measurg on € such that
for any setA € B the functionint, : X(£) — R given by the formula
int4(€) = ve(A) is B-measurable and we have

(13) v(4) = [ ve(A)dwe(©)
X(©)
This system of canonical conditional measures is uniqugwo systems

coincidevg-almost surely. To a measurable partitiomve now assign an
averaging operatofl; on L, (X, v), given by the formula

(14) Acf(x) = f(z)dve, ()

Ce(z)
(the right-hand side is definedalmost surely by Rohlin’s Theorem). Given
a measurable partitiofy let B, be the sigma-algebra of measurable subsets
of X which are unions of elements ¢fand a set of measure zero. Rohlin
proved that for any € L;(X, v) we have the,-almost sure identity

(15) E(f[Be) = Acf.

Rohlin showed, furthermore, that every complete sub-sigigabraB; C
B has the formB, = B, for some measurable partitignof the Lebesgue
space X, B, v).

3.2. Borel partitions. Let (X, B) be a standard Borel space. A decompo-
sition

X = | | X
wherea takes values in an arbitrary index set and where, for eadhe

setX,, is Borel, will be called éBorel partitionif there exists a countable
family

A/



ERGODIC DECOMPOSITION FOR INDUCTIVELY COMPACT GROUPS 19

of Borel sets such that for any two indices, a; wherea; # «s, there
existsi € N satisfying
Xa1 C Zi7 Xag NZ;, = 0.
In this case, the countable family will be called t@untable basi$or the
partition.
If v is a Borel probability measure oK, then the spacéX,B,v) is a
Lebesgue space in the sense of Rohlin, while a Borel partitoov becomes

a measurable partition in the sense of Rohlin. Observe thebraditional
measures are in this case defined on the Borel sigma-algebra.

3.3. The measurable partition corresponding to the sigma-algeta of
invariant sets. Our first aim is to give an explicit description of the mea-
surable partition corresponding to thealgebral; of G-invariant sets.
Let ® be the set given by Propositibn/11 and wite= {¢1, v2, ..., @n, ...}
Introduce a sekX (P, p) by the formula:

X(®,p) = {z € X: A’ pi(x) is defined for allk € N}.

The setX (®, p) is clearly Borel. Observe that for any € (%, p) we
have
v(M(T, p)) = 1.
Let RN be the space of all real sequences:
RY = {I‘ = (’I“k), keN, r, € ]R}

We endowR" with the usual product-algebra, which turns it into a stan-
dard Borel space. Far € RY, we introduce a subse¥ (r, @, p) by the
formula

X(r,®,p) = {zv€X(Q,p): Alpr(x) =ry, k € N}
For anyr € RY, the setX (r, ®, p) is Borel, and we clearly have

X(®,p) = || X(x,®,p).

rcRN
It is clear from the definitions that the Borel partition
X = (X\Xx(@0)| ||| X @0
reRN

has a countable basis.
Introduce a map
Mg : X(®,p) — RY
by the formula

g(x) = (AL pi(x), ..., AL pn(x), ...).
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The maplls is, by definition, Borel. Now, introduce a map
Intg : M(T,p) — RY

by the formula

Intg(v) = (/gpldu,...,/gpndy,...).
X X

The maplnts is, by definition, Borel and injective.

By Souslin’s Theorem (see [13[,/[1]./[4]), it follows the s&itq (M(T, p))
andInte (M (T, p)) are Borel. Introduce a subsat,, C X by the for-
mula

Xerg = Hgl (Int<1> (merg(gv p))) .

Again, Souslin’s Theorem implies that the s€t,, is Borel. We thus have
the following diagram, all whose arrows correspond to Baraeps

Xerg

Int<1>)* 1 ollg
Il

R e M (0, D)

Intg

We shall now see that for anye 9i(%, p) we have
V(Xerg) = 1.

Indeed, take an arbitrary € 9(<, p). The Borel partitiort now induces a
measurable partition that we dengte Let X (¢¥) be the space of elements
of the partition¢, or, in other words, the quotient of the spakeby the
partitioné. Let

e X — X (&)

be the natural projection map, and let

D = (Trgu)* 14
be the quotient measure on(¢Y).

By Rohlin’s Theoremy-almost every elemertt of the partitions” car-
ries a canonical conditional measuge The key step in the construction of
the ergodic decomposition is given by the following Proposi

Proposition 12. The measurable partitiof” generates the-algebraJZ,,
the v-completion of ther-algebra of BorelG-invariant sets. Fofv-almost
everyC we havee € M. (p, T).
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The Proposition will be proved in the following subsectioRohlin’s
decomposition

v = / ve dv(C)
X(&)
will now be used to obatain an ergodic decomposition of thasueev.
Indeed, let the map

mesgr : X (£Y) — Mea(p, T)
be given by the formula
mesgr (C) = re.
Proposition 13. The mapmes,. is v-measurable.

Proof. Let » be a bounded measurable function®¥nLeta € R. By def-
inition of the measurable structure on the quotient spacg’), it suffices
to show that the set

{l’GX:/gpdV@(x) >a}

is v-measurable. But by Propositibn|12 we havetkedmost sure equality

{reX: /apdue(z) >af={re X A% p(x) > a}.

Since the sefz € X : A2 ¢(x) > «a} is Borel, the Proposition is proved.
U

Forz € X let C¢(z) be the element of the partitighcontainingz, and
introduce a map
Mesgr : X — Merg(p, T)

by the formula
Mes§u (Z’) = V@g(x)-
We have a commutative diagram

X

l W
7'('51/

mCSgl/

X (") = Ma(p, %)

In particular, the map/es,. is v-measurable. Propositionl12 immediately
implies the following

Corollary 3. Foranyrv € M..(%, p) we havev(X,,,) = 1. The equality
Mesgr = (Intg) " o Iy
holdsv-almost surely.
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Denoting
7 = (Mesgr),v = (mesg), 1,
we finally obtain an ergodic decomposition

v = /ndﬁ(n)

merg(p,‘f)
for the measure. To complete the proof of the first two claims of Theorem
it remains to establish Proposition 12.
3.4. Proof of Proposition[12.
3.4.1. Proof of the first claim.

Proof. On one hand, every element of the partitighis by definitionG-
invariant.

Conversely, letd be G-invariant. Our aim is to find a measurable gét
which is a union of elements of the partitigh and satisfies

v(AANA") = 0.
Take a sequencg,, € ¢ such that

sup pn, () < +00
keN,zeX

andy,, — x4 almost surely with respect to the measurask — oo.
Now let
Ry={rcRV r= (rn),klim T, = 1}
—00

and let
A=) X(p2r)

reRa
A" ={z e X : A2 xa(z) = 1}.

SinceA is G-invariant, we have

v(ANA") = 0.
Since

Jin g, = 4
v-almost surely and all functions are uniformly bounded, \areech

AL on,, = ALxa

almost surely ag — oc. It follows that

v(ANA") =0,
and, finally, we obtain

V(AAA") =0,
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which is what we had to prove.

3.4.2. Proof of the second claim.

Proposition 14. For everyg € G, for i-almost everye € X (£¥) and ve-
almost every: € X we have

dl/@ OTg .
T/@(x) = P(QJ)-

Proof. This is immediate from the uniqueness of the canonical syste
conditional measures. Indeed, on the one hand, we have

voTl, = / ve o T, div(C);
X (&)
on the other hand,

vol,=p(g,z) v= / p(g,x) - vedv(C),
X&)
whenceve T, = p(g, x)-ve for v-almost allC € X (¢”), and the Proposition
is proved. O

Fibrewise continuity of the cocycle is necessary to pass faccountable
dense subgroup to the whole group.

Proposition 15. Let p be a positive Borel fibrewise continuous cocycle over
a measurable actiof i of a compact grougs on a standard Borel space
(X, B). Letv be a Borel probability measure oK. Let K’ C K be dense,
and assume that the equality

dVOTk
dl/ _p(k7x)

holds for allk € K'. Thenv € M(Tk, p).

(16)

Proof. We start by recalling the following Theorem of Varadarajahgo-
rem 3.2 in[14]).

Theorem 3 (Varadarajan) Assume that a locally compact second count-
able groupK acts measurably on a standard Borel spdcéé B). There
exists a compact metric spagk a continuous action ok’ on Z and aK -
invariant Borel subsef’ C Z such that the restricted action &f on 7' is
measurably isomorphic to the action &fon (X, B).
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Question. Under what assumptions does the same conclusion hold for
Borel actions of inductively compact groups?

We apply Varadarajan’s Theorem to the action of our compamif/ .
Passing, if necessary, to the larger space given by thedimeore may
assume thak is a compact metric space,a Borel probability measure,
and that the action ak” on X is continuous. Consequently,if, — k. in
K asn — oo, then

voly —voly,

weakly in the space of Borel probability measuresXant remains to show
that the measures= p(k,, x)-v weakly converge to the measurg:, =) v
asn — oo, and the equality o T}, = p(kw, x) - v Will be established. First
of all, observe that the function

Pmax(T) = %15? p(k, z)

is well-defined and measurable i (since, by continuity, the maximum
can be replaced by the supremum over a countable dense setshaW
show that for any bounded measurable functioon X we have

lim [ ¢(z)p(kn,x)dv(z /@b dv(x).

n—00
X

Assumey satisfied) < ¢ < 1. For everyr € X we have
lim p(kn, ) = p(koo, ).
n—oo

By Fatou’s Lemma,

/’(/)(l')p(k‘oo,l' ) < lim mf/@b p(kn, x) dv(z).

n—o0

For N > 0 setXy = {z : pmax(z) < N}. Takee > 0 and chooséV large
enough in such a way that we have

V(X \ Xy) < / Y(w dv(z) < e.
X\ Xy

Observe that sinc&,, is K -invariant, for alln € N we have

/ D)k, ) dv(z) < v o Te (X \ Xx) = v(X \ Xy) < ¢
X\ Xy

By the bounded convergence theorem, we have

lim U(x)p(kp, x) dv(zx /@b dv(x),

n—oo
XN
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whence

/?/)(x)p(k‘oo,x ) > lim sup/@b p(kp, x) dv(z) — 3e.
X

n—o0

Sincee is arbitrary, the proposition is proved.
We return to the proof of the second claim of Proposition 12.
First, taken, € N and show that for-almost eveny and allk € K (n)
we have
dl/@ @) Tk
dl/@

(17) = p(k, x).

Choose a countable dense subgrdtip C K (ng). The equality [(1I7)
holds for allk € K’ and forv-almost allC. But then fibrewise continuity of
the cocyclep implies that[(1¥) holds also for all € K (ng). Consequently,
ve € M(p, ¥) for v-almost allC. Now, by definition of the partitioq, for

everyy € ® we have
Al = /godue

almost surely with respect t@ (indeed, the functioml”_¢ is almost surely
constant in restriction t@, but then the constant must be equal to the aver-
age value).
Sinced is dense in_; (X, ve), andve € M(T, p), we conclude thate is
ergodic forv-almost everye, and the Proposition is proved completely.
0

3.5. Uniqueness of the ergodic decompositionConsider the map
Mes : M(T, p) — M(Merg (T, p))
that to a measure € M(T, p) assigns the measure
7 = Mes(v) = (Mesgv), v

By definition, we have

(18) v= [ vt
merg(‘:‘:7p)

Conversely, introduce a mapD : M (M. (T, p)) = M(F, p) which takes
ameasure € M(M...(%, p)) to the measure given by the formula(18).

We now check that the mapsD and Mes are both Borel measurable
and are inverses of each other. It is clear by definition th@tapE D is
Borel measurable and thatD o Mes = Id. We proceed to the proof of the
remaining claims.
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First we check that the maples is Borel measurable. Indeed, take
a1, az € R, take asefl € B(X)and consider the set,, o, C M(Mee(T, p))
given by the formula

Aoy on = {re m(merg(zv p):7({ne merg((L p):n(A) > a1}) > aq}.
It is clear that
(Mes)_l (flalm) ={veMT,p) :v{re X Al xalr) > ar}) > as},

and measurability of the mayes is proved.

It remains to show that for a given measure= (%, p) there is only
one measurg € M(M..,(T,p)) such thaty = ED(7) — namely,7 =
Mes(v). To prove this invertibility of the magZ D it suffices to establish
the following

Proposition 16. Let7, 7o € M(M.ex (T, p)). If 71 L Uy, thenalsaED () L
ED(vy).

Proof. Let vy, = ED((71 + 72)/2), and letA;, A, C M(M.x(T, p)) be
disjoint sets satisfying
ﬁl(Al) = 32(142) = 1, vl(Ag) = 52(141) = 0

The setsX; = (Mesewo) ' (A1), Xo = (Mesgwo) ™" (A,) are then disjoint
andyy-measurable. Furthermore, by definition we have

whereby the Proposition is proved and the uniqueness ofrfedie de-
composition is fully established. O

4. PROOF OFTHEOREM[Z

In the proof of Corollary Il we have constructed an ergodiodgmsition

(19) y = / ndin(n),

o0
Smf-,l,ev'g

where the measure € M(M, ) is automatically admissible.
Given any positive measurable functign: P91~ — R.,, we can de-

form the decomposition (19) by writing

(20) V= / T o(p(n))dir(n).

o(p(n))
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Conversely, for any-finite measure/ € 9> (PM>) satisfying[v/]
[p.7], we can immediately give a measures 21> (9t>°) such thaip.r =

v and
v = / ndv(n).
93’(00
Sincer is admissible, the measuravith the desired properties is clearly
unique.

To complete the proof, we must now show that the measure [glaglsis
the same for all admissible measuresccurring in the ergodic decompo-
sition of the given measure

Recall that the map’; : M7 — M is defined by the formula
fv

Pi(v) = ——.

=

For A € R, we clearly have
Pr(Av) = Py(v).

The mapP; therefore induces a map frof9% to 92, for which we keep
the same symbol.
The mapP; : POy — M is invertible: the inverse is the map that to a
measures € N assigns the projective equivalence class of the me@ure
By definition, given any ergodic decomposition

v = / ndv(n)
93'(00
of a measure € M, for the measuré € M (M) we have

I;( ferg) = ]'
Take therefore an ergodic decomposition

(21) v = ndv(n).
Applying the mapP;, write
_ ) s
erg, f

The measure

) 4
V(f>d (n)

is a probability measure diig;, , since so isPyn for anyn € M.
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Introduce a measuiie € (M, ) by the formula

erg,f
o = ") g
ailn) = gy Aol
and rewrite[(2R) as follows:
(23) N

m

By definition, the formula(23) yields an ergodic decomposibf the mea-
sure Py € M(T, py), indeed, the measur@). v is by definition sup-
ported oD, (%, ps). Since ergodic decomposition is uniquéit(<, py),
we obtain that the measuf€’; ). v does not depend on a specific initial er-
godic decompositior (21).

From the clear equalityy] = [7] it follows that

[(Pr)s 2] = [(Py)s 7],
and, consequently, the measure cl@s$3). o | does not depend on the spe-
cific choice of an ergodic decompositidn[21).

Now recall that the mag’s induces a Borel isomorphism between Borel
space®M andM. Since the measure clag$’). v | does not depend on
the specific choice of an ergodic decomposition, the samksasteue for
the measure clasp.. 7 |. The Proposition is proved completely.

4.1. Finite and infinite ergodic components. Ergodic components of an
infinite G-invariant measure can be both finite and infinite, and the pre
ceding results immediately imply the following descriptiof the sets on
which finite and infinite ergodic componets of an inifniteamant measure
are supported.

Corollary 4. LetT be a measurable action of an inductively compact group
G on a standard Borel spaceX, B), and letr be ac-finite T-invariant
Borel measure oX such that the spack, (X, v) contains a positive Borel
measurable fibrewise continuous function. There exist tsidt Borel
G-invariant subsets(;, X, of X satisfyingX; U X, = X and such that the
following holds.

(1) There exists a family,, of BorelG-invariant subsets satisfyingdY,,) <
+00 and such that

x:Um

If Y is a Borel G-invariant subset satisfying(Y) < +oo, then
v(X;\'Y) = 0. With respect to any ergodic decomposition, almost
all ergodic components of the measuig, are finite.
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(2) If pis abounded measurable function, supported@rand square-
integrable with respect to, then for the corresponding sequence of
averages we havé,,p — 0in Ly(X,v). With respect to any er-
godic decomposition, almost all ergodic components of thasure
v|x, are infinite.

By definition, the sets(;, X, are unique up to subsets of measure zero.

In the case of continuous actions, a following descriptian also be
given. LetX be a complete separable metric space, and le¢ a Borel
measure that assigns finite weight to every ball. Given atpoiE =,
introduce theorbital measures) by the formula

Ny = / Or,adpir (n) (F).
K(n)
Equivalently, for any bounded continuous functipon X, we have

/ fdipt = / F(Tha)dpsc oy ().
X K(n)

In this case the setX;, X, admit the following characterization: the
set X, is the set of all: for which the sequencg? weakly converges to a
probability measure as — oo, while the setX; is the set of all: such that
for any bounded continuous functighon X whose support is a bounded

set, we have
lim / fdny = 0.
n—oo
X

5. KOLMOGOROV' S EXAMPLE AND PROOF OFPROPOSITIONIL.

5.1. Kolmogorov’'s Example. For completeness of the exposition we briefly
recall Kolmogorov’s example [5] showing that, for actiorfdarge groups,
ergodic invariant probability measures may fail to be iraieposable.

Let G be the group of all bijections df, and let(), be the space of
bi-infinite binary sequences. The grogpacts on(), and preserves any
Bernoulli measure of,.

Let Gy C G be the subgroup diinite permutations, that is, permuta-
tions that only move a finite subset of symbols. The gréipis induc-
tively compact. De Finetti's Theorem states thatinvariant indecompos-
able (or, equivalently, ergodic) probability measure$®rare precisely the
Bernoulli measures.

It follows thatG-invariant indecomposable probability measures are pre-
cisely Bernoulli measures as well. Nonetheless, &indw, are two distinct
non-atomic Bernoulli measures 61, then the measur&£*2 is ergodic!
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Indeed, the groug- has only countably many orbits ¢, and it is easily
verified that anyG-invariant set must have either full or zero measure with
respect toA:22.

5.2. Proof of Proposition [1. As before, let(X, B) be a standard Borel
space. Let7 be an arbitrary group, and I&tbe an action of7 on X. The
action¥ will be calledweakly measurablié for any g € G the transforma-
tion 7}, is Borel measurable. Similarly, a positive multiplicat@cycle

will be called weakly measurablé for any g € G the functionp(g, x)

is Borel measurable in. For a weakly measurable cocyglethe space
M(T, p) is defined in the same way and is again a convex cone. A measure
v € M(T, p) will be called strongly indecomposabl# a representation

v=av + (1 — o)

with v, 5 € M(T, p), a € (0,1) is only possible whewy = v, = v,. A
measurer will be calledweakly indecomposablé for any Borel measur-
able setA satisfying, for everyy € G, the conditionv(AAT,A) = 0, we
must have/(A) =0orv(A) = 1.

Proposition 17. A measurer € (¥, p) is weakly indecomposable if and
only if it is strongly indecomposable.

It is more convenient to prove the following equivalent refialation.

Proposition 18. Let p be a positive multiplicative weakly measurable co-
cycle over a weakly measurable action of a grakimn a standard Borel
space( X, B). Letvy, v, € M(T, p) be weakly indecomposable. Then either
V1 =1 0rvy L vs.

Proof. Indeed, letv;, v, € M(T, p) be weakly indecomposable. Consider
the Jordan decomposition of with respect ta, and write
v o=t <Ly, vyl

Sincer,oT, < v,, we also have,(\7,A) = 0 for eachy € G. Itfollows
that for eacly € G we haver,(AAT,A) = 0, whence either,(A) = 0 or
v (A) = 1. If 15(A) = 0, thenv, L 1, and we are done. I, (A) = 1,
thenv; = 0, and we have; < v,. Set
dl/l
dl/g )

Sincevy, v, € M(T,p) andry K 1y, for eachg € G the functiony
satisfiesy,-almost surely, the equality

p(Tyz) = »()
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But then, the weak indecomposability of implies thaty = 1 almost
surely with respect to,, and, thereforey; = 1,. The Proposition is proved
completely. O
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