On Hoelder-continuity of Oseledets subspaces
Résumé
For Hoelder cocycles over a Lipschitz base transformation, possibly non-invertible, we show that the subbundles given by the Oseledets Theorem are Hoelder-continuous on compact sets of measure arbitrarily close to 1. The results extend to vector bundle automorphisms, as well as to the Kontsevich-Zorich cocycle over the Teichmueller flow on the moduli space of abelian differentials. Following a recent result of Chaika-Eskin, our results also extend to any given Teichmueller disk.
Domaines
Systèmes dynamiques [math.DS]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...